gordonchan's picture
Upload 41 files
ca56e6a verified
import multiprocessing
import os
from typing import Optional, Dict, List, Union
import dotenv
from loguru import logger
from pydantic import BaseModel, Field
from api.utils.compat import model_json, disable_warnings
dotenv.load_dotenv()
disable_warnings(BaseModel)
def get_bool_env(key, default="false"):
return os.environ.get(key, default).lower() == "true"
def get_env(key, default):
val = os.environ.get(key, "")
return val or default
class Settings(BaseModel):
""" Settings class. """
host: Optional[str] = Field(
default=get_env("HOST", "0.0.0.0"),
description="Listen address.",
)
port: Optional[int] = Field(
default=int(get_env("PORT", 8000)),
description="Listen port.",
)
api_prefix: Optional[str] = Field(
default=get_env("API_PREFIX", "/v1"),
description="API prefix.",
)
engine: Optional[str] = Field(
default=get_env("ENGINE", "default"),
description="Choices are ['default', 'vllm', 'llama.cpp', 'tgi'].",
)
# model related
model_name: Optional[str] = Field(
default=get_env("MODEL_NAME", None),
description="The name of the model to use for generating completions."
)
model_path: Optional[str] = Field(
default=get_env("MODEL_PATH", None),
description="The path to the model to use for generating completions."
)
adapter_model_path: Optional[str] = Field(
default=get_env("ADAPTER_MODEL_PATH", None),
description="Path to a LoRA file to apply to the model."
)
resize_embeddings: Optional[bool] = Field(
default=get_bool_env("RESIZE_EMBEDDINGS"),
description="Whether to resize embeddings."
)
dtype: Optional[str] = Field(
default=get_env("DTYPE", "half"),
description="Precision dtype."
)
# device related
device: Optional[str] = Field(
default=get_env("DEVICE", "cuda"),
description="Device to load the model."
)
device_map: Optional[Union[str, Dict]] = Field(
default=get_env("DEVICE_MAP", None),
description="Device map to load the model."
)
gpus: Optional[str] = Field(
default=get_env("GPUS", None),
description="Specify which gpus to load the model."
)
num_gpus: Optional[int] = Field(
default=int(get_env("NUM_GPUs", 1)),
ge=0,
description="How many gpus to load the model."
)
# embedding related
only_embedding: Optional[bool] = Field(
default=get_bool_env("ONLY_EMBEDDING"),
description="Whether to launch embedding server only."
)
embedding_name: Optional[str] = Field(
default=get_env("EMBEDDING_NAME", None),
description="The path to the model to use for generating embeddings."
)
embedding_size: Optional[int] = Field(
default=int(get_env("EMBEDDING_SIZE", -1)),
description="The embedding size to use for generating embeddings."
)
embedding_device: Optional[str] = Field(
default=get_env("EMBEDDING_DEVICE", "cuda"),
description="Device to load the model."
)
# quantize related
quantize: Optional[int] = Field(
default=int(get_env("QUANTIZE", 16)),
description="Quantize level for model."
)
load_in_8bit: Optional[bool] = Field(
default=get_bool_env("LOAD_IN_8BIT"),
description="Whether to load the model in 8 bit."
)
load_in_4bit: Optional[bool] = Field(
default=get_bool_env("LOAD_IN_4BIT"),
description="Whether to load the model in 4 bit."
)
using_ptuning_v2: Optional[bool] = Field(
default=get_bool_env("USING_PTUNING_V2"),
description="Whether to load the model using ptuning_v2."
)
pre_seq_len: Optional[int] = Field(
default=int(get_env("PRE_SEQ_LEN", 128)),
ge=0,
description="PRE_SEQ_LEN for ptuning_v2."
)
# context related
context_length: Optional[int] = Field(
default=int(get_env("CONTEXT_LEN", -1)),
ge=-1,
description="Context length for generating completions."
)
chat_template: Optional[str] = Field(
default=get_env("PROMPT_NAME", None),
description="Chat template for generating completions."
)
patch_type: Optional[str] = Field(
default=get_env("PATCH_TYPE", None),
description="Patch type for generating completions."
)
alpha: Optional[Union[str, float]] = Field(
default=get_env("ALPHA", "auto"),
description="Alpha for generating completions."
)
# vllm related
trust_remote_code: Optional[bool] = Field(
default=get_bool_env("TRUST_REMOTE_CODE"),
description="Whether to use remote code."
)
tokenize_mode: Optional[str] = Field(
default=get_env("TOKENIZE_MODE", "auto"),
description="Tokenize mode for vllm server."
)
tensor_parallel_size: Optional[int] = Field(
default=int(get_env("TENSOR_PARALLEL_SIZE", 1)),
ge=1,
description="Tensor parallel size for vllm server."
)
gpu_memory_utilization: Optional[float] = Field(
default=float(get_env("GPU_MEMORY_UTILIZATION", 0.9)),
description="GPU memory utilization for vllm server."
)
max_num_batched_tokens: Optional[int] = Field(
default=int(get_env("MAX_NUM_BATCHED_TOKENS", -1)),
ge=-1,
description="Max num batched tokens for vllm server."
)
max_num_seqs: Optional[int] = Field(
default=int(get_env("MAX_NUM_SEQS", 256)),
ge=1,
description="Max num seqs for vllm server."
)
quantization_method: Optional[str] = Field(
default=get_env("QUANTIZATION_METHOD", None),
description="Quantization method for vllm server."
)
# support for transformers.TextIteratorStreamer
use_streamer_v2: Optional[bool] = Field(
default=get_bool_env("USE_STREAMER_V2"),
description="Support for transformers.TextIteratorStreamer."
)
# support for api key check
api_keys: Optional[List[str]] = Field(
default=get_env("API_KEYS", "").split(",") if get_env("API_KEYS", "") else None,
description="Support for api key check."
)
activate_inference: Optional[bool] = Field(
default=get_bool_env("ACTIVATE_INFERENCE", "true"),
description="Whether to activate inference."
)
interrupt_requests: Optional[bool] = Field(
default=get_bool_env("INTERRUPT_REQUESTS", "true"),
description="Whether to interrupt requests when a new request is received.",
)
# support for llama.cpp
n_gpu_layers: Optional[int] = Field(
default=int(get_env("N_GPU_LAYERS", 0)),
ge=-1,
description="The number of layers to put on the GPU. The rest will be on the CPU. Set -1 to move all to GPU.",
)
main_gpu: Optional[int] = Field(
default=int(get_env("MAIN_GPU", 0)),
ge=0,
description="Main GPU to use.",
)
tensor_split: Optional[List[float]] = Field(
default=float(get_env("TENSOR_SPLIT", None)) if get_env("TENSOR_SPLIT", None) else None,
description="Split layers across multiple GPUs in proportion.",
)
n_batch: Optional[int] = Field(
default=int(get_env("N_BATCH", 512)),
ge=1,
description="The batch size to use per eval."
)
n_threads: Optional[int] = Field(
default=int(get_env("N_THREADS", max(multiprocessing.cpu_count() // 2, 1))),
ge=1,
description="The number of threads to use.",
)
n_threads_batch: Optional[int] = Field(
default=int(get_env("N_THREADS_BATCH", max(multiprocessing.cpu_count() // 2, 1))),
ge=0,
description="The number of threads to use when batch processing.",
)
rope_scaling_type: Optional[int] = Field(
default=int(get_env("ROPE_SCALING_TYPE", -1))
)
rope_freq_base: Optional[float] = Field(
default=float(get_env("ROPE_FREQ_BASE", 0.0)),
description="RoPE base frequency"
)
rope_freq_scale: Optional[float] = Field(
default=float(get_env("ROPE_FREQ_SCALE", 0.0)),
description="RoPE frequency scaling factor",
)
# support for tgi: https://github.com/huggingface/text-generation-inference
tgi_endpoint: Optional[str] = Field(
default=get_env("TGI_ENDPOINT", None),
description="Text Generation Inference Endpoint.",
)
# support for tei: https://github.com/huggingface/text-embeddings-inference
tei_endpoint: Optional[str] = Field(
default=get_env("TEI_ENDPOINT", None),
description="Text Embeddings Inference Endpoint.",
)
max_concurrent_requests: Optional[int] = Field(
default=int(get_env("MAX_CONCURRENT_REQUESTS", 256)),
description="The maximum amount of concurrent requests for this particular deployment."
)
max_client_batch_size: Optional[int] = Field(
default=int(get_env("MAX_CLIENT_BATCH_SIZE", 32)),
description="Control the maximum number of inputs that a client can send in a single request."
)
SETTINGS = Settings()
logger.debug(f"SETTINGS: {model_json(SETTINGS, indent=4)}")
if SETTINGS.gpus:
if len(SETTINGS.gpus.split(",")) < SETTINGS.num_gpus:
raise ValueError(
f"Larger --num_gpus ({SETTINGS.num_gpus}) than --gpus {SETTINGS.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = SETTINGS.gpus