File size: 3,389 Bytes
ff82fe6
3163344
10f217b
3163344
 
 
 
8e068be
3163344
 
 
00a4b21
10f217b
ff82fe6
416c7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff82fe6
 
 
 
fd9442f
3163344
fd9442f
 
3163344
 
8364103
3163344
 
 
8364103
3163344
 
 
8d2e833
a976004
68dd12a
8364103
3163344
 
 
 
 
 
 
fd9442f
3163344
 
 
 
 
68dd12a
a976004
3163344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c681b80
3163344
 
416c7bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3163344
 
 
 
 
 
 
 
 
 
912d566
3163344
 
8d9c0ef
5c43f60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import os
import torch
import pytorch_lightning as ptl
from pytorch_lightning.loggers import TensorBoardLogger

from detector.data import FontDataModule
from detector.model import *
from utils import get_current_tag


torch.set_float32_matmul_precision("high")

parser = argparse.ArgumentParser()
parser.add_argument(
    "-d",
    "--devices",
    nargs="*",
    type=int,
    default=[0],
    help="GPU devices to use (default: [0])",
)
parser.add_argument(
    "-b",
    "--single-batch-size",
    type=int,
    default=64,
    help="Batch size of single device (default: 64)",
)
parser.add_argument(
    "-c",
    "--checkpoint",
    type=str,
    default=None,
    help="Trainer checkpoint path (default: None)",
)
parser.add_argument(
    "-m",
    "--model",
    type=str,
    default="resnet18",
    choices=["resnet18", "resnet34", "resnet50", "resnet101"],
    help="Model to use (default: resnet18)",
)
parser.add_argument(
    "-p",
    "--pretrained",
    action="store_true",
    help="Use pretrained model for ResNet (default: False)",
)

args = parser.parse_args()

devices = args.devices
single_batch_size = args.single_batch_size

total_num_workers = os.cpu_count()
single_device_num_workers = total_num_workers // len(devices)


lr = 0.0001
b1 = 0.9
b2 = 0.999

lambda_font = 2.0
lambda_direction = 0.5
lambda_regression = 1.0

regression_use_tanh = False
augmentation = True

num_warmup_epochs = 5
num_epochs = 100

log_every_n_steps = 100

num_device = len(devices)

data_module = FontDataModule(
    batch_size=single_batch_size,
    num_workers=single_device_num_workers,
    pin_memory=True,
    train_shuffle=True,
    val_shuffle=False,
    test_shuffle=False,
    regression_use_tanh=regression_use_tanh,
    train_transforms=augmentation,
)

num_iters = data_module.get_train_num_iter(num_device) * num_epochs
num_warmup_iter = data_module.get_train_num_iter(num_device) * num_warmup_epochs

model_name = f"{get_current_tag()}"

logger_unconditioned = TensorBoardLogger(
    save_dir=os.getcwd(), name="tensorboard", version=model_name
)

strategy = None if num_device == 1 else "ddp"

trainer = ptl.Trainer(
    max_epochs=num_epochs,
    logger=logger_unconditioned,
    devices=devices,
    accelerator="gpu",
    enable_checkpointing=True,
    log_every_n_steps=log_every_n_steps,
    strategy=strategy,
    deterministic=True,
)

if args.model == "resnet18":
    model = ResNet18Regressor(
        pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
    )
elif args.model == "resnet34":
    model = ResNet34Regressor(
        pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
    )
elif args.model == "resnet50":
    model = ResNet50Regressor(
        pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
    )
elif args.model == "resnet101":
    model = ResNet101Regressor(
        pretrained=args.pretrained, regression_use_tanh=regression_use_tanh
    )
else:
    raise NotImplementedError()

detector = FontDetector(
    model=model,
    lambda_font=lambda_font,
    lambda_direction=lambda_direction,
    lambda_regression=lambda_regression,
    lr=lr,
    betas=(b1, b2),
    num_warmup_iters=num_warmup_iter,
    num_iters=num_iters,
    num_epochs=num_epochs,
)

trainer.fit(detector, datamodule=data_module, ckpt_path=args.checkpoint)
trainer.test(detector, datamodule=data_module)