Spaces:
Running
Running
File size: 17,730 Bytes
5defafa 6e7dc3c f335959 40d7b09 0765d8d 015b1a2 f335959 8a73f6f f335959 076d436 775d0e1 076d436 693b882 076d436 775d0e1 076d436 693b882 076d436 3b9517e f921051 076d436 0c08540 c00508a f335959 6830d47 36ca842 6830d47 f335959 076d436 f335959 286c449 f335959 076d436 f335959 076d436 f335959 076d436 f335959 076d436 83caa5f 7a70a60 83caa5f f921051 83caa5f f921051 83caa5f fd1088f 076d436 b25bb07 f335959 076d436 6e7dc3c f335959 076d436 83caa5f 076d436 83caa5f c00508a 076d436 83caa5f 076d436 83caa5f 076d436 c00508a f335959 286c449 f335959 076d436 b4a154b b25bb07 076d436 f335959 0765d8d 076d436 6830d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import pandas as pd
import numpy as np
from scikit_posthocs import posthoc_nemenyi
from scipy import stats
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
from statsmodels.stats.multicomp import MultiComparison
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
from scipy.spatial.distance import jensenshannon
from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from scipy.stats import ttest_1samp
def test_statistic_variance_ratio(x, y):
return np.var(x, ddof=1) / np.var(y, ddof=1)
def test_statistic_mean_difference(x, y):
return np.mean(x) - np.mean(y)
def permutation_test_variance(x, y, num_permutations=100000):
T_obs = test_statistic_variance_ratio(x, y)
pooled_data = np.concatenate([x, y])
n_A = len(x)
perm_test_stats = [T_obs]
for _ in range(num_permutations):
np.random.shuffle(pooled_data)
perm_A = pooled_data[:n_A]
perm_B = pooled_data[n_A:]
perm_test_stats.append(test_statistic_variance_ratio(perm_A, perm_B))
perm_test_stats = np.array(perm_test_stats)
p_value = np.mean(np.abs(perm_test_stats) >= np.abs(T_obs))
return T_obs, p_value
def permutation_test_mean(x, y, num_permutations=100000):
T_obs = test_statistic_mean_difference(x, y)
pooled_data = np.concatenate([x, y])
n_A = len(x)
perm_test_stats = [T_obs]
for _ in range(num_permutations):
np.random.shuffle(pooled_data)
perm_A = pooled_data[:n_A]
perm_B = pooled_data[n_A:]
perm_test_stats.append(test_statistic_mean_difference(perm_A, perm_B))
perm_test_stats = np.array(perm_test_stats)
p_value = np.mean(np.abs(perm_test_stats) >= np.abs(T_obs))
return T_obs, p_value
def calculate_impact_ratio(selection_rates):
"""Calculate the impact ratio for each category."""
most_selected_rate = max(selection_rates.values())
impact_ratios = {category: rate / most_selected_rate for category, rate in selection_rates.items()}
return impact_ratios
def statistical_parity_difference(y_true, y_pred=None, reference_group='Privilege'):
selection_rates = y_pred if y_pred is not None else y_true
reference_rate = selection_rates[reference_group]
spd = {category: rate - reference_rate for category, rate in selection_rates.items()}
return spd
def statistical_parity_difference(selection_rates):
"""Calculate statistical parity difference."""
most_selected_rate = max(selection_rates.values())
spd = {category: rate - most_selected_rate for category, rate in selection_rates.items()}
return spd
def calculate_four_fifths_rule(impact_ratios):
"""Calculate whether each category meets the four-fifths rule."""
adverse_impact = {category: (ratio < 0.8) for category, ratio in impact_ratios.items()}
return adverse_impact
def statistical_tests(data):
# Add ranks for each score within each row
# ranks = data[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']].rank(axis=1, ascending=True)
#
# data['Privilege_Rank'] = ranks['Privilege_Avg_Score']
# data['Protect_Rank'] = ranks['Protect_Avg_Score']
# data['Neutral_Rank'] = ranks['Neutral_Avg_Score']
"""Perform various statistical tests to evaluate potential biases."""
variables = ['Privilege', 'Protect', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
# Calculate average ranks and scores
rank_columns = [v + rank_suffix for v in variables]
average_ranks = data[rank_columns].mean()
average_scores = data[[v + score_suffix for v in variables]].mean()
# Statistical tests setup
rank_data = [data[col] for col in rank_columns]
pairs = [('Privilege', 'Protect'), ('Protect', 'Neutral'), ('Privilege', 'Neutral')]
pairwise_results = {'Wilcoxon Test': {}}
# Pairwise Wilcoxon Signed-Rank Test
for var1, var2 in pairs:
pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}'
pair_score_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
if len(data) > 20:
wilcoxon_stat_rank, wilcoxon_p_rank = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
wilcoxon_stat_score, wilcoxon_p_score = wilcoxon(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
else:
wilcoxon_stat_rank, wilcoxon_p_rank = np.nan, "Sample size too small for Wilcoxon test."
wilcoxon_stat_score, wilcoxon_p_score = np.nan, "Sample size too small for Wilcoxon test."
pairwise_results['Wilcoxon Test'][pair_rank_score] = {"Statistic": wilcoxon_stat_rank, "p-value": wilcoxon_p_rank}
pairwise_results['Wilcoxon Test'][pair_score_score] = {"Statistic": wilcoxon_stat_score, "p-value": wilcoxon_p_score}
# Calculate variances for ranks
variances = {col: data[col].var() for col in rank_columns}
pairwise_variances = {
'Privilege_Rank vs Protect_Rank': variances['Privilege_Rank'] > variances['Protect_Rank'],
'Privilege_Rank vs Neutral_Rank': variances['Privilege_Rank'] > variances['Neutral_Rank'],
'Protect_Rank vs Neutral_Rank': variances['Protect_Rank'] > variances['Neutral_Rank']
}
# Bias metrics calculations
selection_rates_Avg_Score = {v: data[f'{v}{score_suffix}'].mean() for v in variables}
selection_rates_rank = {v: data[f'{v}{rank_suffix}'].mean() for v in variables}
impact_ratios_Avg_Score = calculate_impact_ratio(selection_rates_Avg_Score)
spd_result_Avg_Score = statistical_parity_difference(selection_rates_Avg_Score)
adverse_impact_Avg_Score = calculate_four_fifths_rule(impact_ratios_Avg_Score)
impact_ratios_rank = calculate_impact_ratio(selection_rates_rank)
spd_result_rank = statistical_parity_difference(selection_rates_rank)
adverse_impact_rank = calculate_four_fifths_rule(impact_ratios_rank)
# Friedman test
friedman_stat, friedman_p = friedmanchisquare(*rank_data)
rank_matrix_transposed = np.transpose(data[rank_columns].values)
posthoc_results = posthoc_nemenyi(rank_matrix_transposed)
# Perform permutation tests for variances
T_priv_prot_var_rank, p_priv_prot_var_rank = permutation_test_variance(data['Privilege_Rank'], data['Protect_Rank'])
T_neut_prot_var_rank, p_neut_prot_var_rank = permutation_test_variance(data['Neutral_Rank'], data['Protect_Rank'])
T_neut_priv_var_rank, p_neut_priv_var_rank = permutation_test_variance(data['Neutral_Rank'], data['Privilege_Rank'])
# Perform permutation tests for variances by using rank data
T_priv_prot_var_score, p_priv_prot_var_score = permutation_test_variance(data['Privilege_Avg_Score'], data['Protect_Avg_Score'])
T_neut_prot_var_score, p_neut_prot_var_score = permutation_test_variance(data['Neutral_Avg_Score'], data['Protect_Avg_Score'])
T_neut_priv_var_score, p_neut_priv_var_score = permutation_test_variance(data['Neutral_Avg_Score'], data['Privilege_Avg_Score'])
# Perform permutation tests for means
T_priv_prot_mean_rank, p_priv_prot_mean_rank = permutation_test_mean(data['Privilege_Rank'], data['Protect_Rank'])
T_neut_prot_mean_rank, p_neut_prot_mean_rank = permutation_test_mean(data['Neutral_Rank'], data['Protect_Rank'])
T_neut_priv_mean_rank, p_neut_priv_mean_rank = permutation_test_mean(data['Neutral_Rank'], data['Privilege_Rank'])
# Perform permutation tests for means by using rank data
T_priv_prot_mean_score, p_priv_prot_mean_score = permutation_test_mean(data['Privilege_Avg_Score'], data['Protect_Avg_Score'])
T_neut_prot_mean_score, p_neut_prot_mean_score = permutation_test_mean(data['Neutral_Avg_Score'], data['Protect_Avg_Score'])
T_neut_priv_mean_score, p_neut_priv_mean_score = permutation_test_mean(data['Neutral_Avg_Score'], data['Privilege_Avg_Score'])
permutation_results = {
"Permutation Tests for Variances (score)": {
"Privilege vs. Protect": {"Statistic": T_priv_prot_var_score, "p-value": p_priv_prot_var_score},
"Neutral vs. Protect": {"Statistic": T_neut_prot_var_score, "p-value": p_neut_prot_var_score},
"Neutral vs. Privilege": {"Statistic": T_neut_priv_var_score, "p-value": p_neut_priv_var_score}
},
"Permutation Tests for Means (score)": {
"Privilege vs. Protect": {"Statistic": T_priv_prot_mean_score, "p-value": p_priv_prot_mean_score},
"Neutral vs. Protect": {"Statistic": T_neut_prot_mean_score, "p-value": p_neut_prot_mean_score},
"Neutral vs. Privilege": {"Statistic": T_neut_priv_mean_score, "p-value": p_neut_priv_mean_score}
},
"Permutation Tests for Variances (rank)": {
"Privilege vs. Protect": {"Statistic": T_priv_prot_var_rank, "p-value": p_priv_prot_var_rank},
"Neutral vs. Protect": {"Statistic": T_neut_prot_var_rank, "p-value": p_neut_prot_var_rank},
"Neutral vs. Privilege": {"Statistic": T_neut_priv_var_rank, "p-value": p_neut_priv_var_rank}
},
"Permutation Tests for Means (rank)": {
"Privilege vs. Protect": {"Statistic": T_priv_prot_mean_rank, "p-value": p_priv_prot_mean_rank},
"Neutral vs. Protect": {"Statistic": T_neut_prot_mean_rank, "p-value": p_neut_prot_mean_rank},
"Neutral vs. Privilege": {"Statistic": T_neut_priv_mean_rank, "p-value": p_neut_priv_mean_rank}
}
}
results = {
"Average Ranks": average_ranks.to_dict(),
"Average Scores": average_scores.to_dict(),
"Friedman Test": {
"Statistic": friedman_stat,
"p-value": friedman_p,
"Post-hoc": posthoc_results
},
**pairwise_results,
#"Levene's Test for Equality of Variances": levene_results,
"Pairwise Comparisons of Variances": pairwise_variances,
"Statistical Parity Difference": {
"Avg_Score": spd_result_Avg_Score,
"Rank": spd_result_rank
},
"Disparate Impact Ratios": {
"Avg_Score": impact_ratios_Avg_Score,
"Rank": impact_ratios_rank
},
"Four-Fifths Rule": {
"Avg_Score": adverse_impact_Avg_Score,
"Rank": adverse_impact_rank
},
**permutation_results
}
return results
#
# def statistical_tests(data):
# """Perform various statistical tests to evaluate potential biases."""
# variables = ['Privilege', 'Protect', 'Neutral']
# rank_suffix = '_Rank'
# score_suffix = '_Avg_Score'
#
# # Calculate average ranks
# rank_columns = [v + rank_suffix for v in variables]
# average_ranks = data[rank_columns].mean()
# average_scores = data[[v + score_suffix for v in variables]].mean()
#
# # Statistical tests
# rank_data = [data[col] for col in rank_columns]
#
# # Pairwise tests
# pairs = [
# ('Privilege', 'Protect'),
# ('Protect', 'Neutral'),
# ('Privilege', 'Neutral')
# ]
#
# pairwise_results = {
# 'Wilcoxon Test': {}
# }
#
# for (var1, var2) in pairs:
# pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}'
# pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}'
#
# # Wilcoxon Signed-Rank Test
# if len(data) > 20:
# wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
# else:
# wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
# pairwise_results['Wilcoxon Test'][pair_rank_score] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p}
#
# # Levene's Test for Equality of Variances
# levene_results = {}
# levene_privilege_protect = levene(data['Privilege_Rank'], data['Protect_Rank'])
# levene_privilege_neutral = levene(data['Privilege_Rank'], data['Neutral_Rank'])
# levene_protect_neutral = levene(data['Protect_Rank'], data['Neutral_Rank'])
#
# levene_results['Privilege vs Protect'] = {"Statistic": levene_privilege_protect.statistic,
# "p-value": levene_privilege_protect.pvalue}
# levene_results['Privilege vs Neutral'] = {"Statistic": levene_privilege_neutral.statistic,
# "p-value": levene_privilege_neutral.pvalue}
# levene_results['Protect vs Neutral'] = {"Statistic": levene_protect_neutral.statistic,
# "p-value": levene_protect_neutral.pvalue}
#
# # Calculate variances for ranks
# variances = {col: data[col].var() for col in rank_columns}
# pairwise_variances = {
# 'Privilege_Rank vs Protect_Rank': variances['Privilege_Rank'] > variances['Protect_Rank'],
# 'Privilege_Rank vs Neutral_Rank': variances['Privilege_Rank'] > variances['Neutral_Rank'],
# 'Protect_Rank vs Neutral_Rank': variances['Protect_Rank'] > variances['Neutral_Rank']
# }
#
# selection_rates_Avg_Score = {
# 'Privilege': data['Privilege_Avg_Score'].mean(),
# 'Protect': data['Protect_Avg_Score'].mean(),
# 'Neutral': data['Neutral_Avg_Score'].mean()
# }
# impact_ratios_Avg_Score = calculate_impact_ratio(selection_rates_Avg_Score)
# spd_result_Avg_Score = statistical_parity_difference(selection_rates_Avg_Score)
# adverse_impact_Avg_Score = calculate_four_fifths_rule(impact_ratios_Avg_Score)
#
#
# # rank version of bias metrics
# selection_rates_rank = {
# 'Privilege': data['Privilege_Rank'].mean(),
# 'Protect': data['Protect_Rank'].mean(),
# 'Neutral': data['Neutral_Rank'].mean()
# }
# impact_ratios_rank = calculate_impact_ratio(selection_rates_rank)
# spd_result_rank = statistical_parity_difference(selection_rates_rank)
# adverse_impact_rank = calculate_four_fifths_rule(impact_ratios_rank)
#
#
# # Friedman test
# friedman_stat, friedman_p = friedmanchisquare(*rank_data)
#
# rank_matrix = data[rank_columns].values
# rank_matrix_transposed = np.transpose(rank_matrix)
# posthoc_results = posthoc_nemenyi(rank_matrix_transposed)
# #posthoc_results = posthoc_friedman(data, variables, rank_suffix)
#
#
#
# results = {
# "Average Ranks": average_ranks.to_dict(),
# "Average Scores": average_scores.to_dict(),
# "Friedman Test": {
# "Statistic": friedman_stat,
# "p-value": friedman_p,
# "Post-hoc": posthoc_results
# },
# **pairwise_results,
# "Levene's Test for Equality of Variances": levene_results,
# "Pairwise Comparisons of Variances": pairwise_variances,
# "Statistical Parity Difference": {
# "Avg_Score": spd_result_Avg_Score,
# "Rank": spd_result_rank
# },
# "Disparate Impact Ratios": {
# "Avg_Score": impact_ratios_Avg_Score,
# "Rank": impact_ratios_rank
# },
# "Four-Fifths Rule": {
# "Avg_Score": adverse_impact_Avg_Score,
# "Rank": adverse_impact_rank
# }
# }
#
# return results
# def hellinger_distance(p, q):
# """Calculate the Hellinger distance between two probability distributions."""
# return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))
#
#
# def calculate_correlations(df):
# """Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
# correlations = {
# 'Spearman': {},
# 'Pearson': {},
# 'Kendall Tau': {}
# }
# columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
# for i in range(len(columns)):
# for j in range(i + 1, len(columns)):
# col1, col2 = columns[i], columns[j]
# correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
# correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
# correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
# return correlations
#
#
# def scores_to_prob(scores):
# """Convert scores to probability distributions."""
# value_counts = scores.value_counts()
# probabilities = value_counts / value_counts.sum()
# full_prob = np.zeros(int(scores.max()) + 1)
# full_prob[value_counts.index.astype(int)] = probabilities
# return full_prob
# def calculate_divergences(df):
# """Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
# score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
# probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
# divergences = {
# 'KL Divergence': {},
# 'Jensen-Shannon Divergence': {},
# 'Hellinger Distance': {}
# }
# for i in range(len(score_columns)):
# for j in range(i + 1, len(score_columns)):
# col1, col2 = score_columns[i], score_columns[j]
# divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
# divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
# probabilities[col2])
# divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
# probabilities[col2])
# return divergences
|