Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from optimum.intel import OVModelForCausalLM | |
from transformers import AutoTokenizer, pipeline | |
# 載入模型和標記器 | |
model_id = "hsuwill000/Qwen2.5-3B-Instruct-openvino" | |
model = OVModelForCausalLM.from_pretrained(model_id, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# 建立生成管道 | |
#pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def respond(prompt , history): | |
# 將當前訊息與歷史訊息合併 | |
#input_text = message if not history else history[-1]["content"] + " " + message | |
#input_text = message+",(450字內回覆)" | |
messages = [ | |
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, | |
{"role": "user", "content": prompt } | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
# 獲取模型的回應 | |
#response = pipe(input_text, max_length=512, truncation=True, num_return_sequences=1) | |
#reply = response[0]['generated_text'] | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# 返回新的消息格式 | |
print(f"Messages: {messages}") | |
print(f"Reply: {response}") | |
return response | |
# 設定 Gradio 的聊天界面 | |
demo = gr.ChatInterface(fn=respond, title="Qwen2.5-0.5B-Instruct-openvino-4bit", description="Qwen2.5-0.5B-Instruct-openvino-4bit", type='messages') | |
if __name__ == "__main__": | |
demo.launch() |