Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module | |
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE | |
from models.stylegan2.model import EqualLinear | |
class GradualStyleBlock(Module): | |
def __init__(self, in_c, out_c, spatial): | |
super(GradualStyleBlock, self).__init__() | |
self.out_c = out_c | |
self.spatial = spatial | |
num_pools = int(np.log2(spatial)) | |
modules = [] | |
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU()] | |
for i in range(num_pools - 1): | |
modules += [ | |
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), | |
nn.LeakyReLU() | |
] | |
self.convs = nn.Sequential(*modules) | |
self.linear = EqualLinear(out_c, out_c, lr_mul=1) | |
def forward(self, x): | |
x = self.convs(x) | |
x = x.view(-1, self.out_c) | |
x = self.linear(x) | |
return x | |
class GradualStyleEncoder(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(GradualStyleEncoder, self).__init__() | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
self.styles = nn.ModuleList() | |
self.style_count = 18 | |
self.coarse_ind = 3 | |
self.middle_ind = 7 | |
for i in range(self.style_count): | |
if i < self.coarse_ind: | |
style = GradualStyleBlock(512, 512, 16) | |
elif i < self.middle_ind: | |
style = GradualStyleBlock(512, 512, 32) | |
else: | |
style = GradualStyleBlock(512, 512, 64) | |
self.styles.append(style) | |
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) | |
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) | |
def _upsample_add(self, x, y): | |
'''Upsample and add two feature maps. | |
Args: | |
x: (Variable) top feature map to be upsampled. | |
y: (Variable) lateral feature map. | |
Returns: | |
(Variable) added feature map. | |
Note in PyTorch, when input size is odd, the upsampled feature map | |
with `F.upsample(..., scale_factor=2, mode='nearest')` | |
maybe not equal to the lateral feature map size. | |
e.g. | |
original input size: [N,_,15,15] -> | |
conv2d feature map size: [N,_,8,8] -> | |
upsampled feature map size: [N,_,16,16] | |
So we choose bilinear upsample which supports arbitrary output sizes. | |
''' | |
_, _, H, W = y.size() | |
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y | |
def forward(self, x): | |
x = self.input_layer(x) | |
latents = [] | |
modulelist = list(self.body._modules.values()) | |
for i, l in enumerate(modulelist): | |
x = l(x) | |
if i == 6: | |
c1 = x | |
elif i == 20: | |
c2 = x | |
elif i == 23: | |
c3 = x | |
for j in range(self.coarse_ind): | |
latents.append(self.styles[j](c3)) | |
p2 = self._upsample_add(c3, self.latlayer1(c2)) | |
for j in range(self.coarse_ind, self.middle_ind): | |
latents.append(self.styles[j](p2)) | |
p1 = self._upsample_add(p2, self.latlayer2(c1)) | |
for j in range(self.middle_ind, self.style_count): | |
latents.append(self.styles[j](p1)) | |
out = torch.stack(latents, dim=1) | |
return out | |
class BackboneEncoderUsingLastLayerIntoW(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(BackboneEncoderUsingLastLayerIntoW, self).__init__() | |
print('Using BackboneEncoderUsingLastLayerIntoW') | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1)) | |
self.linear = EqualLinear(512, 512, lr_mul=1) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_pool(x) | |
x = x.view(-1, 512) | |
x = self.linear(x) | |
return x | |
class BackboneEncoderUsingLastLayerIntoWPlus(Module): | |
def __init__(self, num_layers, mode='ir', opts=None): | |
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__() | |
print('Using BackboneEncoderUsingLastLayerIntoWPlus') | |
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' | |
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' | |
blocks = get_blocks(num_layers) | |
if mode == 'ir': | |
unit_module = bottleneck_IR | |
elif mode == 'ir_se': | |
unit_module = bottleneck_IR_SE | |
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), | |
BatchNorm2d(64), | |
PReLU(64)) | |
self.output_layer_2 = Sequential(BatchNorm2d(512), | |
torch.nn.AdaptiveAvgPool2d((7, 7)), | |
Flatten(), | |
Linear(512 * 7 * 7, 512)) | |
self.linear = EqualLinear(512, 512 * 18, lr_mul=1) | |
modules = [] | |
for block in blocks: | |
for bottleneck in block: | |
modules.append(unit_module(bottleneck.in_channel, | |
bottleneck.depth, | |
bottleneck.stride)) | |
self.body = Sequential(*modules) | |
def forward(self, x): | |
x = self.input_layer(x) | |
x = self.body(x) | |
x = self.output_layer_2(x) | |
x = self.linear(x) | |
x = x.view(-1, 18, 512) | |
return x | |