Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, StableDiffusionPipeline | |
import torch | |
import cv2 | |
import numpy as np | |
from transformers import pipeline | |
import gradio as gr | |
from PIL import Image | |
from diffusers.utils import load_image | |
import os, random, gc, re, json, time, shutil, glob | |
import PIL.Image | |
import tqdm | |
from controlnet_aux import OpenposeDetector | |
from accelerate import Accelerator | |
from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem | |
HfApi=HfApi() | |
HF_TOKEN=os.getenv("HF_TOKEN") | |
HF_HUB_DISABLE_TELEMETRY=1 | |
DO_NOT_TRACK=1 | |
HF_HUB_ENABLE_HF_TRANSFER=0 | |
accelerator = Accelerator(cpu=True) | |
InferenceClient=InferenceClient() | |
models =[] | |
loris=[] | |
apol=[] | |
def hgfdm(models): | |
models=models | |
poi=InferenceClient.list_deployed_models() | |
voi=poi["text-to-image"] | |
for met in voi: | |
pio=""+met+"" | |
models.append(pio) | |
return models | |
def smdls(models): | |
models=models | |
mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,) | |
if mtlst: | |
for nea in mtlst: | |
vmh=""+str(nea.id)+"" | |
models.append(vmh) | |
return models | |
def sldls(loris): | |
loris=loris | |
ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,) | |
if ltlst: | |
for noa in ltlst: | |
lmh=""+str(noa.id)+"" | |
loris.append(lmh) | |
return loris | |
def chdr(apol,prompt,modil,los,stips,fnamo,gaul): | |
try: | |
type="SD_controlnet" | |
tre='./tmpo/'+fnamo+'.json' | |
tra='./tmpo/'+fnamo+'_0.png' | |
trm='./tmpo/'+fnamo+'_1.png' | |
trv='./tmpo/'+fnamo+'_pose.png' | |
trh='./tmpo/'+fnamo+'_canny.png' | |
trg='./tmpo/'+fnamo+'_cann_im.png' | |
trq='./tmpo/'+fnamo+'_tilage.png' | |
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"] | |
flng=[itm[::-1] for itm in flng] | |
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" | |
if re.search(ptn, prompt, re.IGNORECASE): | |
print("onon buddy") | |
else: | |
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} | |
with open(tre, 'w') as f: | |
json.dump(dobj, f) | |
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) | |
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} | |
with open(tre, 'w') as f: | |
json.dump(dobj, f) | |
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) | |
try: | |
for pgn in glob.glob('./tmpo/*.png'): | |
os.remove(pgn) | |
for jgn in glob.glob('./tmpo/*.json'): | |
os.remove(jgn) | |
del tre | |
del tra | |
del trm | |
del trv | |
del trh | |
del trg | |
del trq | |
except: | |
print("cant") | |
except: | |
print("failed to umake obj") | |
def crll(dnk): | |
lix="" | |
lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model") | |
for flre in list(lotr): | |
fllr=[] | |
gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path) | |
yir=re.search(r'[^/]+$', flre.path) | |
if gar: | |
fllr.append(""+str(yir.group(0))+"") | |
lix=""+fllr[-1]+"" | |
else: | |
lix="" | |
return lix | |
def plax(gaul,req: gr.Request): | |
gaul=str(req.headers) | |
return gaul | |
def plex(prompt,mput,neg_prompt,modil,stips,scaly,csal,csbl,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)): | |
gc.collect() | |
adi="" | |
ldi="" | |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
controlnet = [ | |
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float32), | |
ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32), | |
] | |
try: | |
crda=ModelCard.load(""+modil+"") | |
card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt") | |
cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt") | |
cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt") | |
mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE) | |
moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE) | |
if moch: | |
adi+=""+str(moch.group(1))+", " | |
else: | |
print("no floff trigger") | |
if mtch: | |
adi+=""+str(mtch.group(1))+", " | |
else: | |
print("no fluff trigger") | |
if card: | |
adi+=""+str(card)+", " | |
else: | |
print("no instance") | |
if cerd: | |
adi+=""+str(cerd)+", " | |
else: | |
print("no custom") | |
if cird: | |
adi+=""+str(cird)+", " | |
else: | |
print("no lora") | |
except: | |
print("no card") | |
try: | |
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=False,torch_dtype=torch.float32, safety_checker=None)) | |
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=False,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None)) | |
except: | |
gc.collect() | |
pope = accelerator.prepare(StableDiffusionPipeline.from_pretrained(""+modil+"", use_safetensors=True,torch_dtype=torch.float32, safety_checker=None)) | |
pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(""+modil+"", use_safetensors=True,controlnet=controlnet,torch_dtype=torch.float32,safety_checker=None)) | |
if los: | |
try: | |
lrda=ModelCard.load(""+los+"") | |
lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt") | |
lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt") | |
lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion") | |
ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE) | |
loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE) | |
if loch and lird: | |
ldi+=""+str(loch.group(1))+", " | |
else: | |
print("no lloff trigger") | |
if ltch and lird: | |
ldi+=""+str(ltch.group(1))+", " | |
else: | |
print("no lluff trigger") | |
if lard and lird: | |
ldi+=""+str(lard)+", " | |
else: | |
print("no instance") | |
ldi+="" | |
if lerd and lird: | |
ldi+=""+str(lerd)+", " | |
else: | |
print("no custom") | |
ldi+="" | |
except: | |
print("no trigger") | |
try: | |
pope.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",) | |
pope.fuse_lora(fuse_unet=True,fuse_text_encoder=False) | |
except: | |
print("no can do") | |
else: | |
los="" | |
pope.unet.to(memory_format=torch.channels_last) | |
pope = accelerator.prepare(pope.to("cpu")) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe = accelerator.prepare(pipe.to("cpu")) | |
gc.collect() | |
apol=[] | |
height=hei | |
width=wei | |
prompt=""+str(adi)+""+str(ldi)+""+prompt+"" | |
negative_prompt=""+neg_prompt+"" | |
lora_scale=loca | |
if nut == 0: | |
nm = random.randint(1, 2147483616) | |
while nm % 32 != 0: | |
nm = random.randint(1, 2147483616) | |
else: | |
nm=nut | |
generator = torch.Generator(device="cpu").manual_seed(nm) | |
tilage = pope(prompt,num_inference_steps=5,height=height,width=width,generator=generator,cross_attention_kwargs={"scale": lora_scale}).images[0] | |
cannyimage = np.array(tilage) | |
low_threshold = 100 | |
high_threshold = 200 | |
fnamo=""+str(int(time.time()))+"" | |
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold) | |
cammyimage=Image.fromarray(cannyimage).save('./tmpo/'+fnamo+'_canny.png', 'PNG') | |
zero_start = cannyimage.shape[1] // 4 | |
zero_end = zero_start + cannyimage.shape[1] // 2 | |
cannyimage[:, zero_start:zero_end] = 0 | |
cannyimage = cannyimage[:, :, None] | |
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2) | |
canny_image = Image.fromarray(cannyimage) | |
pose_image = load_image(mput).resize((512, 512)) | |
openpose_image = openpose(pose_image) | |
images = [openpose_image, canny_image] | |
omage=pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[csal, csbl]) | |
for i, imge in enumerate(omage["images"]): | |
apol.append(imge) | |
imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG') | |
apol.append(openpose_image) | |
apol.append(cammyimage) | |
apol.append(canny_image) | |
apol.append(tilage) | |
openpose_image.save('./tmpo/'+fnamo+'_pose.png', 'PNG') | |
canny_image.save('./tmpo/'+fnamo+'_cann_im.png', 'PNG') | |
tilage.save('./tmpo/'+fnamo+'_tilage.png', 'PNG') | |
chdr(apol,prompt,modil,los,stips,fnamo,gaul) | |
return apol | |
def aip(ill,api_name="/run"): | |
return | |
def pit(ill,api_name="/predict"): | |
return | |
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: | |
out=gr.Gallery(label="Generated Output Image", columns=1) | |
inut=gr.Textbox(label="Prompt") | |
mput=gr.Image(type="filepath") | |
gaul=gr.Textbox(visible=False) | |
inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value") | |
btn=gr.Button("GENERATE") | |
with gr.Accordion("Advanced Settings", open=False): | |
inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value") | |
inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,") | |
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20) | |
inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7) | |
csal=gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1) | |
csbl=gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1) | |
loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5) | |
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) | |
inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512) | |
inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512) | |
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inot,inyt,inat,csal,csbl,indt,inwt,inht,inlt,loca,gaul]) | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=20,inline=False,show_api=False) |