hwberry2 commited on
Commit
2162cdc
·
1 Parent(s): e0191a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -9
app.py CHANGED
@@ -24,6 +24,9 @@ with gr.Blocks() as demo:
24
  def modelTraining(img):
25
  class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
26
  'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
 
 
 
27
 
28
  # clothing dataset
29
  mnist = tf.keras.datasets.mnist
@@ -66,14 +69,7 @@ with gr.Blocks() as demo:
66
  # create the final model for production
67
  probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
68
 
69
- # Input image pre-processing before submission to the model
70
- # the image can be passed as a PIL or numpy
71
-
72
- # Normalize the pixel values?
73
- print(f"Input image shape: {img.shape} Dimensions: {img.ndim} Array Element: {img[0]} ***********************************************************************")
74
- # assuming image_array is your input image array of shape (552, 3)
75
- resized_array = np.resize(img, (28, 28)) # resize the array to (28, 28)
76
- input_array = np.expand_dims(resized_array, axis=0) # add an extra dimension to represent the batch size
77
 
78
  # Make a prediction using the model
79
  prediction = probability_model.predict(input_array)
@@ -85,7 +81,7 @@ with gr.Blocks() as demo:
85
  # Creates the Gradio interface objects
86
  with gr.Row():
87
  with gr.Column(scale=2):
88
- image_data = gr.Image(label="Upload Image", type="numpy")
89
  with gr.Column(scale=1):
90
  model_prediction = gr.Text(label="Model Prediction", interactive=False)
91
  image_data.change(modelTraining, image_data, model_prediction)
 
24
  def modelTraining(img):
25
  class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
26
  'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
27
+
28
+ # Normalize the pixel values
29
+ img = np.array(img) / 255.0
30
 
31
  # clothing dataset
32
  mnist = tf.keras.datasets.mnist
 
69
  # create the final model for production
70
  probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
71
 
72
+ input_array = np.expand_dims(img, axis=0) # add an extra dimension to represent the batch size
 
 
 
 
 
 
 
73
 
74
  # Make a prediction using the model
75
  prediction = probability_model.predict(input_array)
 
81
  # Creates the Gradio interface objects
82
  with gr.Row():
83
  with gr.Column(scale=2):
84
+ image_data = gr.Image(label="Upload Image", type="numpy", image_mode="L", shape=[28,28], invert_colors=True)
85
  with gr.Column(scale=1):
86
  model_prediction = gr.Text(label="Model Prediction", interactive=False)
87
  image_data.change(modelTraining, image_data, model_prediction)