Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,60 +21,67 @@ with gr.Blocks() as demo:
|
|
21 |
# Train, evaluate and test a ML
|
22 |
# image classification model for
|
23 |
# clothes images
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#split the training data in to a train/test sets
|
35 |
-
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
36 |
-
x_train, x_test = x_train / 255.0, x_test / 255.0
|
37 |
-
|
38 |
-
# create the neural net layers
|
39 |
-
model = tf.keras.models.Sequential([
|
40 |
-
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
41 |
-
tf.keras.layers.Dense(128, activation='relu'),
|
42 |
-
tf.keras.layers.Dropout(0.2),
|
43 |
-
tf.keras.layers.Dense(10)
|
44 |
-
])
|
45 |
-
|
46 |
-
#make a post-training predition on the
|
47 |
-
#training set data
|
48 |
-
predictions = model(x_train[:1]).numpy()
|
49 |
-
|
50 |
-
# converts the logits into a probability
|
51 |
-
tf.nn.softmax(predictions).numpy()
|
52 |
-
|
53 |
-
#create and train the loss function
|
54 |
-
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
55 |
-
loss_fn(y_train[:1], predictions).numpy()
|
56 |
-
|
57 |
-
# compile the model with the loss function
|
58 |
-
model.compile(optimizer='adam',
|
59 |
-
loss=loss_fn,
|
60 |
-
metrics=['accuracy'])
|
61 |
-
|
62 |
-
# train the model - 5 runs
|
63 |
-
# evaluate the model on the test set
|
64 |
-
model.fit(x_train, y_train, epochs=5)
|
65 |
-
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
|
66 |
-
post_train_results = f"Test accuracy: {test_acc} Test Loss: {test_loss}"
|
67 |
-
print(post_train_results)
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
input_array = np.expand_dims(img, axis=0) # add an extra dimension to represent the batch size
|
73 |
|
74 |
# Make a prediction using the model
|
75 |
prediction = probability_model.predict(input_array)
|
76 |
-
|
77 |
# Postprocess the prediction and return it
|
|
|
|
|
78 |
return predicted_label
|
79 |
|
80 |
|
@@ -83,8 +90,10 @@ with gr.Blocks() as demo:
|
|
83 |
with gr.Column(scale=2):
|
84 |
image_data = gr.Image(label="Upload Image", type="numpy", image_mode="L", shape=[28,28], invert_colors=True)
|
85 |
with gr.Column(scale=1):
|
|
|
|
|
86 |
model_prediction = gr.Text(label="Model Prediction", interactive=False)
|
87 |
-
image_data.change(
|
88 |
|
89 |
|
90 |
# creates a local web server
|
|
|
21 |
# Train, evaluate and test a ML
|
22 |
# image classification model for
|
23 |
# clothes images
|
24 |
+
|
25 |
+
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
|
26 |
+
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
|
27 |
+
|
28 |
+
# Normalize the pixel values
|
29 |
+
img = np.array(img) / 255.0
|
30 |
|
31 |
+
# clothing dataset
|
32 |
+
mnist = tf.keras.datasets.mnist
|
33 |
+
|
34 |
+
#split the training data in to a train/test sets
|
35 |
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
36 |
+
x_train, x_test = x_train / 255.0, x_test / 255.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# create the neural net layers
|
39 |
+
model = tf.keras.models.Sequential([
|
40 |
+
tf.keras.layers.Flatten(input_shape=(28, 28)),
|
41 |
+
tf.keras.layers.Dense(128, activation='relu'),
|
42 |
+
tf.keras.layers.Dropout(0.2),
|
43 |
+
tf.keras.layers.Dense(10)
|
44 |
+
])
|
45 |
|
46 |
+
#make a post-training predition on the
|
47 |
+
#training set data
|
48 |
+
predictions = model(x_train[:1]).numpy()
|
49 |
+
|
50 |
+
# converts the logits into a probability
|
51 |
+
tf.nn.softmax(predictions).numpy()
|
52 |
+
|
53 |
+
#create and train the loss function
|
54 |
+
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
55 |
+
loss_fn(y_train[:1], predictions).numpy()
|
56 |
+
|
57 |
+
# compile the model with the loss function
|
58 |
+
model.compile(optimizer='adam',
|
59 |
+
loss=loss_fn,
|
60 |
+
metrics=['accuracy'])
|
61 |
+
|
62 |
+
# train the model - 5 runs
|
63 |
+
# evaluate the model on the test set
|
64 |
+
model.fit(x_train, y_train, epochs=5)
|
65 |
+
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
|
66 |
+
post_train_results = f"Test accuracy: {test_acc} Test Loss: {test_loss}"
|
67 |
+
print(post_train_results)
|
68 |
+
|
69 |
+
# create the final model for production
|
70 |
+
probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()])
|
71 |
+
|
72 |
+
|
73 |
+
def classifyImage(img):
|
74 |
+
#global probability_model
|
75 |
+
#global class_names
|
76 |
+
|
77 |
input_array = np.expand_dims(img, axis=0) # add an extra dimension to represent the batch size
|
78 |
|
79 |
# Make a prediction using the model
|
80 |
prediction = probability_model.predict(input_array)
|
81 |
+
|
82 |
# Postprocess the prediction and return it
|
83 |
+
predicted_label = class_names[np.argmax(prediction)]
|
84 |
+
|
85 |
return predicted_label
|
86 |
|
87 |
|
|
|
90 |
with gr.Column(scale=2):
|
91 |
image_data = gr.Image(label="Upload Image", type="numpy", image_mode="L", shape=[28,28], invert_colors=True)
|
92 |
with gr.Column(scale=1):
|
93 |
+
train_test_btn = gr.Button(value="Train/Test")
|
94 |
+
model_performance = gr.Text(label="Model Performance Results", interactive=False)
|
95 |
model_prediction = gr.Text(label="Model Prediction", interactive=False)
|
96 |
+
image_data.change(classifyImage, image_data, model_prediction)
|
97 |
|
98 |
|
99 |
# creates a local web server
|