Spaces:
Running
Running
import os | |
import gradio as gr | |
import openai | |
from gtts import gTTS | |
openai.api_key = os.environ["OPEN_AI_KEY"] | |
def transcribe(audio): | |
audio_file = open(audio, "rb") | |
# Call the transcribe method with the file-like object | |
transcript = openai.Audio.transcribe("whisper-1", audio_file) | |
return transcript["text"] | |
def botResponse(user_input): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
#messages=user_input) | |
messages=[ | |
{"role": "system", "content": "You are a therapist. Respond in less than 5 sentences."}, | |
{"role": "user", "content": user_input} | |
] | |
) | |
system_message = response["choices"][0]["message"]["content"] | |
return system_message | |
def giveVoice(bot_message): | |
myobj = gTTS(text=bot_message) | |
myobj.save("temp.mp3") | |
dir = os.getcwd() | |
new_path = os.path.join(dir, "temp.mp3") | |
return new_path | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
user_audio = gr.Audio(source="microphone", type="filepath", label="Input Phrase") | |
submit_btn = gr.Button(value="Transcribe") | |
with gr.Column(): | |
#gpt_response = gr.Audio(label="Voice Response") | |
user_transcript = gr.Text(label="User Transcript") | |
gpt_transcript = gr.Text(label="GPT Transcript") | |
gpt_voice = gr.Audio(label="Voice Response") | |
submit_btn.click(transcribe, inputs=user_audio, outputs=user_transcript) | |
user_transcript.change(botResponse, inputs=user_transcript, outputs=gpt_transcript) | |
gpt_transcript.change(giveVoice, inputs=gpt_transcript, outputs=gpt_voice) | |
demo.launch(share=False) |