Spaces:
Sleeping
Sleeping
File size: 7,094 Bytes
9a18337 16370d6 eb1095f bd1d3c9 eb1095f 9a18337 eb1095f 9a18337 eb1095f 49c7d9d eb1095f 49c7d9d eb1095f 9a18337 e269e3e 907615b 9a18337 0d6b068 9a18337 e269e3e 9a18337 eb1095f bd1d3c9 eb1095f 0d6b068 eb1095f bd1d3c9 eb1095f bd1d3c9 eb1095f bd1d3c9 e269e3e 9a18337 eb1095f 0d6b068 bd1d3c9 0d6b068 eb1095f bd1d3c9 eb1095f bd1d3c9 0d6b068 eb1095f 0d6b068 eb1095f 0d6b068 eb1095f 2af65fc e269e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from fastapi import FastAPI, File, UploadFile, Request
from pydantic import BaseModel
from pathlib import Path
from fastapi import Form
from fastapi.responses import JSONResponse
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
from fastapi import Depends
#在FastAPI中,Depends()函数用于声明依赖项
from huggingface_hub import InferenceClient
import numpy as np
from langchain.chains.question_answering import load_qa_chain
from langchain import PromptTemplate, LLMChain
from langchain import HuggingFaceHub
from langchain.document_loaders import TextLoader
import torch
from sentence_transformers.util import semantic_search
import requests
import random
import string
import sys
import timeit
import datetime
import io
import os
from dotenv import load_dotenv
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
model_id = os.getenv('model_id')
hf_token = os.getenv('hf_token')
repo_id = os.getenv('repo_id')
def get_embeddings(input_str_texts):
response = requests.post(api_url, headers=headers, json={"inputs": input_str_texts, "options":{"wait_for_model":True}})
return response.json()
def generate_random_string(length):
letters = string.ascii_lowercase
return ''.join(random.choice(letters) for i in range(length))
def remove_context(text):
if 'Context:' in text:
end_of_context = text.find('\n\n')
return text[end_of_context + 2:]
else:
return text
api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
headers = {"Authorization": f"Bearer {hf_token}"}
llm = HuggingFaceHub(repo_id=repo_id,
model_kwargs={"min_length":512,
"max_new_tokens":1024, "do_sample":True,
"temperature":0.01,
"top_k":50,
"top_p":0.95, "eos_token_id":49155})
prompt_template = """
You are a very helpful AI assistant. Please ONLY use {context} to answer the user's question {question}. If you don't know the answer, just say that you don't know. DON'T try to make up an answer.
Your response should be full and easy to understand.
"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(llm=llm, chain_type="stuff", prompt=PROMPT)
app = FastAPI()
class FileToProcess(BaseModel):
uploaded_file: UploadFile = File(...)
@app.get("/")
async def home():
return "API Working!"
@app.post("/fastapi_file_upload_process")
#async def upload_file(user_question: str, file_to_process: FileToProcess = Depends()):
async def pdf_file_qa_process(user_question: str, request: Request, file_to_process: FileToProcess = Depends()):
uploaded_file = file_to_process.uploaded_file
print("File received:"+uploaded_file.filename)
user_question = request.query_params.get("user_question")
filename = request.query_params.get("filename")
print("User entered question: "+user_question)
print("User uploaded file: "+filename)
random_string = generate_random_string(20)
file_path = Path.cwd() / random_string
file_path.mkdir(parents=True, exist_ok=True)
file_saved_in_api = file_path / uploaded_file.filename
print(file_saved_in_api)
with open(file_saved_in_api, "wb+") as file_object:
file_object.write(uploaded_file.file.read())
text_splitter = RecursiveCharacterTextSplitter(
#separator = "\n",
chunk_size = 500,
chunk_overlap = 100, #striding over the text
length_function = len,
)
doc_reader = PdfReader(file_saved_in_api)
raw_text = ''
for i, page in enumerate(doc_reader.pages):
text = page.extract_text()
if text:
raw_text += text
temp_texts = text_splitter.split_text(raw_text)
texts=temp_texts
initial_embeddings=get_embeddings(temp_texts)
db_embeddings = torch.FloatTensor(initial_embeddings)
print(db_embeddings)
print("db_embeddings created...")
#question = var_query.query
question = user_question
print("API Call Query Received: "+question)
q_embedding=get_embeddings(question)
final_q_embedding = torch.FloatTensor(q_embedding)
print(final_q_embedding)
print("Semantic Similarity Search Starts...")
start_1 = timeit.default_timer()
hits = semantic_search(final_q_embedding, torch.FloatTensor(db_embeddings), top_k=5)
end_1 = timeit.default_timer()
print("Semantic Similarity Search Ends...")
print(f'Semantic Similarity Search共耗时: @ {end_1 - start_1}')
page_contents = []
for i in range(len(hits[0])):
page_content = texts[hits[0][i]['corpus_id']]
page_contents.append(page_content)
print(page_contents)
temp_page_contents=str(page_contents)
final_page_contents = temp_page_contents.replace('\\n', '')
random_string_2=generate_random_string(20)
file_path = random_string_2 + ".txt"
with open(file_path, "w", encoding="utf-8") as file:
file.write(final_page_contents)
loader = TextLoader(file_path, encoding="utf-8")
loaded_documents = loader.load()
print("*****loaded_documents******")
print(loaded_documents)
print("***********")
print(question)
print("*****question******")
print("LLM Chain Starts...")
start_2 = timeit.default_timer()
temp_ai_response = chain({"input_documents": loaded_documents, "question": question}, return_only_outputs=False)
end_2 = timeit.default_timer()
print("LLM Chain Ends...")
print(f'LLM Chain共耗时: @ {end_2 - start_2}')
print(temp_ai_response)
initial_ai_response=temp_ai_response['output_text']
print(initial_ai_response)
cleaned_initial_ai_response = remove_context(initial_ai_response)
#final_ai_response = cleaned_initial_ai_response.partition('¿Cuál es')[0].strip().replace('\n\n', '\n').replace('<|end|>', '').replace('<|user|>', '').replace('<|system|>', '').replace('<|assistant|>', '')
final_ai_response = cleaned_initial_ai_response.partition('¿Cuál es')[0].strip()
final_ai_response = final_ai_response.partition('¿Cuáles')[0].strip()
final_ai_response = final_ai_response.partition('¿Qué es')[0].strip()
final_ai_response = final_ai_response.partition('<|end|>')[0].strip().replace('\n\n', '\n').replace('<|end|>', '').replace('<|user|>', '').replace('<|system|>', '').replace('<|assistant|>', '')
new_final_ai_response = final_ai_response.split('Unhelpful Answer:')[0].strip()
new_final_ai_response = new_final_ai_response.split('Note:')[0].strip()
new_final_ai_response = new_final_ai_response.split('Please provide feedback on how to improve the chatbot.')[0].strip()
print(new_final_ai_response)
return {"AIResponse": new_final_ai_response}
#return JSONResponse({"AIResponse": new_final_ai_response}) |