Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import torch | |
import gradio as gr | |
# model_name = "arjunanand13/Florence-enphase2" | |
model_name = "arjunanand13/florence-enphaseall2-30e" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device) | |
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) | |
torch.cuda.empty_cache() | |
DEFAULT_PROMPT = ("You are a Leg Lift Classifier. There is an image of a throughput component " | |
"and we need to identify if the leg is inserted in the hole or not. Return 'True' " | |
"if any leg is not completely seated in the hole; return 'False' if the leg is inserted " | |
"in the hole. Return only the required JSON in this format: {Leg_lift: , Reason: }.") | |
def predict(image, question): | |
if not isinstance(image, Image.Image): | |
raise ValueError(f"Expected image to be PIL.Image, but got {type(image)}") | |
encoding = processor(images=image, text=question, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate(**encoding, max_length=256) | |
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return answer | |
def gradio_interface(image, question): | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
answer = predict(image, question) | |
return answer | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), # Ensures image is passed as a PIL object | |
gr.Textbox(label="Enter your question or edit the default prompt", lines=6, value=DEFAULT_PROMPT) # Default prompt pre-filled and editable | |
], | |
outputs=gr.Textbox(label="Answer"), | |
title="Florence-enphase Leg Lift Classifier", | |
description=("Upload an image and ask a question about the leg lift. The model will classify whether " | |
"the leg is inserted in the hole or not based on the image. You can edit the default prompt if needed.") | |
) | |
iface.launch(debug=True) | |