Spaces:
Sleeping
Sleeping
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
import logging | |
from contextlib import nullcontext | |
# if your python version < 3.7 use the below one | |
# from contextlib import suppress as nullcontext | |
import torch | |
from torch.nn.utils import clip_grad_norm_ | |
class Executor: | |
def __init__(self): | |
self.step = 0 | |
def train( | |
self, model, optimizer, scheduler, data_loader, device, writer, args, scaler | |
): | |
"""Train one epoch""" | |
model.train() | |
clip = args.get("grad_clip", 50.0) | |
log_interval = args.get("log_interval", 10) | |
rank = args.get("rank", 0) | |
epoch = args.get("epoch", 0) | |
accum_grad = args.get("accum_grad", 1) | |
is_distributed = args.get("is_distributed", True) | |
use_amp = args.get("use_amp", False) | |
logging.info( | |
"using accumulate grad, new batch size is {} times" | |
" larger than before".format(accum_grad) | |
) | |
if use_amp: | |
assert scaler is not None | |
# A context manager to be used in conjunction with an instance of | |
# torch.nn.parallel.DistributedDataParallel to be able to train | |
# with uneven inputs across participating processes. | |
if isinstance(model, torch.nn.parallel.DistributedDataParallel): | |
model_context = model.join | |
else: | |
model_context = nullcontext | |
num_seen_utts = 0 | |
with model_context(): | |
for batch_idx, batch in enumerate(data_loader): | |
key, feats, target, feats_lengths, target_lengths = batch | |
feats = feats.to(device) | |
target = target.to(device) | |
feats_lengths = feats_lengths.to(device) | |
target_lengths = target_lengths.to(device) | |
num_utts = target_lengths.size(0) | |
if num_utts == 0: | |
continue | |
context = None | |
# Disable gradient synchronizations across DDP processes. | |
# Within this context, gradients will be accumulated on module | |
# variables, which will later be synchronized. | |
if is_distributed and batch_idx % accum_grad != 0: | |
context = model.no_sync | |
# Used for single gpu training and DDP gradient synchronization | |
# processes. | |
else: | |
context = nullcontext | |
with context(): | |
# autocast context | |
# The more details about amp can be found in | |
# https://pytorch.org/docs/stable/notes/amp_examples.html | |
with torch.cuda.amp.autocast(scaler is not None): | |
loss_dict = model(feats, feats_lengths, target, target_lengths) | |
loss = loss_dict["loss"] / accum_grad | |
if use_amp: | |
scaler.scale(loss).backward() | |
else: | |
loss.backward() | |
num_seen_utts += num_utts | |
if batch_idx % accum_grad == 0: | |
if rank == 0 and writer is not None: | |
writer.add_scalar("train_loss", loss, self.step) | |
# Use mixed precision training | |
if use_amp: | |
scaler.unscale_(optimizer) | |
grad_norm = clip_grad_norm_(model.parameters(), clip) | |
# Must invoke scaler.update() if unscale_() is used in | |
# the iteration to avoid the following error: | |
# RuntimeError: unscale_() has already been called | |
# on this optimizer since the last update(). | |
# We don't check grad here since that if the gradient | |
# has inf/nan values, scaler.step will skip | |
# optimizer.step(). | |
scaler.step(optimizer) | |
scaler.update() | |
else: | |
grad_norm = clip_grad_norm_(model.parameters(), clip) | |
if torch.isfinite(grad_norm): | |
optimizer.step() | |
optimizer.zero_grad() | |
scheduler.step() | |
self.step += 1 | |
if batch_idx % log_interval == 0: | |
lr = optimizer.param_groups[0]["lr"] | |
log_str = "TRAIN Batch {}/{} loss {:.6f} ".format( | |
epoch, batch_idx, loss.item() * accum_grad | |
) | |
for name, value in loss_dict.items(): | |
if name != "loss" and value is not None: | |
log_str += "{} {:.6f} ".format(name, value.item()) | |
log_str += "lr {:.8f} rank {}".format(lr, rank) | |
logging.debug(log_str) | |
def cv(self, model, data_loader, device, args): | |
"""Cross validation on""" | |
model.eval() | |
rank = args.get("rank", 0) | |
epoch = args.get("epoch", 0) | |
log_interval = args.get("log_interval", 10) | |
# in order to avoid division by 0 | |
num_seen_utts = 1 | |
total_loss = 0.0 | |
with torch.no_grad(): | |
for batch_idx, batch in enumerate(data_loader): | |
key, feats, target, feats_lengths, target_lengths = batch | |
feats = feats.to(device) | |
target = target.to(device) | |
feats_lengths = feats_lengths.to(device) | |
target_lengths = target_lengths.to(device) | |
num_utts = target_lengths.size(0) | |
if num_utts == 0: | |
continue | |
loss_dict = model(feats, feats_lengths, target, target_lengths) | |
loss = loss_dict["loss"] | |
if torch.isfinite(loss): | |
num_seen_utts += num_utts | |
total_loss += loss.item() * num_utts | |
if batch_idx % log_interval == 0: | |
log_str = "CV Batch {}/{} loss {:.6f} ".format( | |
epoch, batch_idx, loss.item() | |
) | |
for name, value in loss_dict.items(): | |
if name != "loss" and value is not None: | |
log_str += "{} {:.6f} ".format(name, value.item()) | |
log_str += "history loss {:.6f}".format(total_loss / num_seen_utts) | |
log_str += " rank {}".format(rank) | |
logging.debug(log_str) | |
return total_loss, num_seen_utts | |