File size: 8,582 Bytes
01cfd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import logging

logger = logging.getLogger(__name__)

import librosa
import numpy as np
import soundfile as sf
import torch
from tqdm import tqdm

cpu = torch.device("cpu")


class ConvTDFNetTrim:
    def __init__(
        self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
    ):
        super(ConvTDFNetTrim, self).__init__()

        self.dim_f = dim_f
        self.dim_t = 2**dim_t
        self.n_fft = n_fft
        self.hop = hop
        self.n_bins = self.n_fft // 2 + 1
        self.chunk_size = hop * (self.dim_t - 1)
        self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
            device
        )
        self.target_name = target_name
        self.blender = "blender" in model_name

        self.dim_c = 4
        out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
        self.freq_pad = torch.zeros(
            [1, out_c, self.n_bins - self.dim_f, self.dim_t]
        ).to(device)

        self.n = L // 2

    def stft(self, x):
        x = x.reshape([-1, self.chunk_size])
        x = torch.stft(
            x,
            n_fft=self.n_fft,
            hop_length=self.hop,
            window=self.window,
            center=True,
            return_complex=True,
        )
        x = torch.view_as_real(x)
        x = x.permute([0, 3, 1, 2])
        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
            [-1, self.dim_c, self.n_bins, self.dim_t]
        )
        return x[:, :, : self.dim_f]

    def istft(self, x, freq_pad=None):
        freq_pad = (
            self.freq_pad.repeat([x.shape[0], 1, 1, 1])
            if freq_pad is None
            else freq_pad
        )
        x = torch.cat([x, freq_pad], -2)
        c = 4 * 2 if self.target_name == "*" else 2
        x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
            [-1, 2, self.n_bins, self.dim_t]
        )
        x = x.permute([0, 2, 3, 1])
        x = x.contiguous()
        x = torch.view_as_complex(x)
        x = torch.istft(
            x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
        )
        return x.reshape([-1, c, self.chunk_size])


def get_models(device, dim_f, dim_t, n_fft):
    return ConvTDFNetTrim(
        device=device,
        model_name="Conv-TDF",
        target_name="vocals",
        L=11,
        dim_f=dim_f,
        dim_t=dim_t,
        n_fft=n_fft,
    )


class Predictor:
    def __init__(self, args):
        import onnxruntime as ort

        logger.info(ort.get_available_providers())
        self.args = args
        self.model_ = get_models(
            device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
        )
        self.model = ort.InferenceSession(
            os.path.join(args.onnx, self.model_.target_name + ".onnx"),
            providers=[
                "CUDAExecutionProvider",
                "DmlExecutionProvider",
                "CPUExecutionProvider",
            ],
        )
        logger.info("ONNX load done")

    def demix(self, mix):
        samples = mix.shape[-1]
        margin = self.args.margin
        chunk_size = self.args.chunks * 44100
        assert not margin == 0, "margin cannot be zero!"
        if margin > chunk_size:
            margin = chunk_size

        segmented_mix = {}

        if self.args.chunks == 0 or samples < chunk_size:
            chunk_size = samples

        counter = -1
        for skip in range(0, samples, chunk_size):
            counter += 1

            s_margin = 0 if counter == 0 else margin
            end = min(skip + chunk_size + margin, samples)

            start = skip - s_margin

            segmented_mix[skip] = mix[:, start:end].copy()
            if end == samples:
                break

        sources = self.demix_base(segmented_mix, margin_size=margin)
        """
        mix:(2,big_sample)
        segmented_mix:offset->(2,small_sample)
        sources:(1,2,big_sample)
        """
        return sources

    def demix_base(self, mixes, margin_size):
        chunked_sources = []
        progress_bar = tqdm(total=len(mixes))
        progress_bar.set_description("Processing")
        for mix in mixes:
            cmix = mixes[mix]
            sources = []
            n_sample = cmix.shape[1]
            model = self.model_
            trim = model.n_fft // 2
            gen_size = model.chunk_size - 2 * trim
            pad = gen_size - n_sample % gen_size
            mix_p = np.concatenate(
                (np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
            )
            mix_waves = []
            i = 0
            while i < n_sample + pad:
                waves = np.array(mix_p[:, i : i + model.chunk_size])
                mix_waves.append(waves)
                i += gen_size
            mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
            with torch.no_grad():
                _ort = self.model
                spek = model.stft(mix_waves)
                if self.args.denoise:
                    spec_pred = (
                        -_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
                        + _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
                    )
                    tar_waves = model.istft(torch.tensor(spec_pred))
                else:
                    tar_waves = model.istft(
                        torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
                    )
                tar_signal = (
                    tar_waves[:, :, trim:-trim]
                    .transpose(0, 1)
                    .reshape(2, -1)
                    .numpy()[:, :-pad]
                )

                start = 0 if mix == 0 else margin_size
                end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
                if margin_size == 0:
                    end = None
                sources.append(tar_signal[:, start:end])

                progress_bar.update(1)

            chunked_sources.append(sources)
        _sources = np.concatenate(chunked_sources, axis=-1)
        # del self.model
        progress_bar.close()
        return _sources

    def prediction(self, m, vocal_root, others_root, format):
        os.makedirs(vocal_root, exist_ok=True)
        os.makedirs(others_root, exist_ok=True)
        basename = os.path.basename(m)
        mix, rate = librosa.load(m, mono=False, sr=44100)
        if mix.ndim == 1:
            mix = np.asfortranarray([mix, mix])
        mix = mix.T
        sources = self.demix(mix.T)
        opt = sources[0].T
        if format in ["wav", "flac"]:
            sf.write(
                "%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
            )
            sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
        else:
            path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
            path_other = "%s/%s_others.wav" % (others_root, basename)
            sf.write(path_vocal, mix - opt, rate)
            sf.write(path_other, opt, rate)
            opt_path_vocal = path_vocal[:-4] + ".%s" % format
            opt_path_other = path_other[:-4] + ".%s" % format
            if os.path.exists(path_vocal):
                os.system(
                    "ffmpeg -i %s -vn %s -q:a 2 -y" % (path_vocal, opt_path_vocal)
                )
                if os.path.exists(opt_path_vocal):
                    try:
                        os.remove(path_vocal)
                    except:
                        pass
            if os.path.exists(path_other):
                os.system(
                    "ffmpeg -i %s -vn %s -q:a 2 -y" % (path_other, opt_path_other)
                )
                if os.path.exists(opt_path_other):
                    try:
                        os.remove(path_other)
                    except:
                        pass


class MDXNetDereverb:
    def __init__(self, chunks, device):
        self.onnx = "assets/uvr5_weights/onnx_dereverb_By_FoxJoy"
        self.shifts = 10  # 'Predict with randomised equivariant stabilisation'
        self.mixing = "min_mag"  # ['default','min_mag','max_mag']
        self.chunks = chunks
        self.margin = 44100
        self.dim_t = 9
        self.dim_f = 3072
        self.n_fft = 6144
        self.denoise = True
        self.pred = Predictor(self)
        self.device = device

    def _path_audio_(self, input, vocal_root, others_root, format, is_hp3=False):
        self.pred.prediction(input, vocal_root, others_root, format)