File size: 12,459 Bytes
01cfd4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import contextlib
import importlib
import torch
import intel_extension_for_pytorch as ipex  # pylint: disable=import-error, unused-import

# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return


class CondFunc:  # pylint: disable=missing-class-docstring
    def __new__(cls, orig_func, sub_func, cond_func):
        self = super(CondFunc, cls).__new__(cls)
        if isinstance(orig_func, str):
            func_path = orig_func.split(".")
            for i in range(len(func_path) - 1, -1, -1):
                try:
                    resolved_obj = importlib.import_module(".".join(func_path[:i]))
                    break
                except ImportError:
                    pass
            for attr_name in func_path[i:-1]:
                resolved_obj = getattr(resolved_obj, attr_name)
            orig_func = getattr(resolved_obj, func_path[-1])
            setattr(
                resolved_obj,
                func_path[-1],
                lambda *args, **kwargs: self(*args, **kwargs),
            )
        self.__init__(orig_func, sub_func, cond_func)
        return lambda *args, **kwargs: self(*args, **kwargs)

    def __init__(self, orig_func, sub_func, cond_func):
        self.__orig_func = orig_func
        self.__sub_func = sub_func
        self.__cond_func = cond_func

    def __call__(self, *args, **kwargs):
        if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
            return self.__sub_func(self.__orig_func, *args, **kwargs)
        else:
            return self.__orig_func(*args, **kwargs)


_utils = torch.utils.data._utils


def _shutdown_workers(self):
    if (
        torch.utils.data._utils is None
        or torch.utils.data._utils.python_exit_status is True
        or torch.utils.data._utils.python_exit_status is None
    ):
        return
    if hasattr(self, "_shutdown") and not self._shutdown:
        self._shutdown = True
        try:
            if hasattr(self, "_pin_memory_thread"):
                self._pin_memory_thread_done_event.set()
                self._worker_result_queue.put((None, None))
                self._pin_memory_thread.join()
                self._worker_result_queue.cancel_join_thread()
                self._worker_result_queue.close()
            self._workers_done_event.set()
            for worker_id in range(len(self._workers)):
                if self._persistent_workers or self._workers_status[worker_id]:
                    self._mark_worker_as_unavailable(worker_id, shutdown=True)
            for w in self._workers:  # pylint: disable=invalid-name
                w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
            for q in self._index_queues:  # pylint: disable=invalid-name
                q.cancel_join_thread()
                q.close()
        finally:
            if self._worker_pids_set:
                torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
                self._worker_pids_set = False
            for w in self._workers:  # pylint: disable=invalid-name
                if w.is_alive():
                    w.terminate()


class DummyDataParallel(
    torch.nn.Module
):  # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
    def __new__(
        cls, module, device_ids=None, output_device=None, dim=0
    ):  # pylint: disable=unused-argument
        if isinstance(device_ids, list) and len(device_ids) > 1:
            print("IPEX backend doesn't support DataParallel on multiple XPU devices")
        return module.to("xpu")


def return_null_context(*args, **kwargs):  # pylint: disable=unused-argument
    return contextlib.nullcontext()


def check_device(device):
    return bool(
        (isinstance(device, torch.device) and device.type == "cuda")
        or (isinstance(device, str) and "cuda" in device)
        or isinstance(device, int)
    )


def return_xpu(device):
    return (
        f"xpu:{device[-1]}"
        if isinstance(device, str) and ":" in device
        else f"xpu:{device}"
        if isinstance(device, int)
        else torch.device("xpu")
        if isinstance(device, torch.device)
        else "xpu"
    )


def ipex_no_cuda(orig_func, *args, **kwargs):
    torch.cuda.is_available = lambda: False
    orig_func(*args, **kwargs)
    torch.cuda.is_available = torch.xpu.is_available


original_autocast = torch.autocast


def ipex_autocast(*args, **kwargs):
    if len(args) > 0 and args[0] == "cuda":
        return original_autocast("xpu", *args[1:], **kwargs)
    else:
        return original_autocast(*args, **kwargs)


original_torch_cat = torch.cat


def torch_cat(tensor, *args, **kwargs):
    if len(tensor) == 3 and (
        tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype
    ):
        return original_torch_cat(
            [tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)],
            *args,
            **kwargs,
        )
    else:
        return original_torch_cat(tensor, *args, **kwargs)


original_interpolate = torch.nn.functional.interpolate


def interpolate(
    tensor,
    size=None,
    scale_factor=None,
    mode="nearest",
    align_corners=None,
    recompute_scale_factor=None,
    antialias=False,
):  # pylint: disable=too-many-arguments
    if antialias or align_corners is not None:
        return_device = tensor.device
        return_dtype = tensor.dtype
        return original_interpolate(
            tensor.to("cpu", dtype=torch.float32),
            size=size,
            scale_factor=scale_factor,
            mode=mode,
            align_corners=align_corners,
            recompute_scale_factor=recompute_scale_factor,
            antialias=antialias,
        ).to(return_device, dtype=return_dtype)
    else:
        return original_interpolate(
            tensor,
            size=size,
            scale_factor=scale_factor,
            mode=mode,
            align_corners=align_corners,
            recompute_scale_factor=recompute_scale_factor,
            antialias=antialias,
        )


original_linalg_solve = torch.linalg.solve


def linalg_solve(A, B, *args, **kwargs):  # pylint: disable=invalid-name
    if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
        return_device = A.device
        return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(
            return_device
        )
    else:
        return original_linalg_solve(A, B, *args, **kwargs)


def ipex_hijacks():
    CondFunc(
        "torch.Tensor.to",
        lambda orig_func, self, device=None, *args, **kwargs: orig_func(
            self, return_xpu(device), *args, **kwargs
        ),
        lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.Tensor.cuda",
        lambda orig_func, self, device=None, *args, **kwargs: orig_func(
            self, return_xpu(device), *args, **kwargs
        ),
        lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.empty",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.load",
        lambda orig_func, *args, map_location=None, **kwargs: orig_func(
            *args, return_xpu(map_location), **kwargs
        ),
        lambda orig_func, *args, map_location=None, **kwargs: map_location is None
        or check_device(map_location),
    )
    CondFunc(
        "torch.randn",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.ones",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.zeros",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.tensor",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )
    CondFunc(
        "torch.linspace",
        lambda orig_func, *args, device=None, **kwargs: orig_func(
            *args, device=return_xpu(device), **kwargs
        ),
        lambda orig_func, *args, device=None, **kwargs: check_device(device),
    )

    CondFunc(
        "torch.Generator",
        lambda orig_func, device=None: torch.xpu.Generator(device),
        lambda orig_func, device=None: device is not None
        and device != torch.device("cpu")
        and device != "cpu",
    )

    CondFunc(
        "torch.batch_norm",
        lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
            input,
            weight
            if weight is not None
            else torch.ones(input.size()[1], device=input.device),
            bias
            if bias is not None
            else torch.zeros(input.size()[1], device=input.device),
            *args,
            **kwargs,
        ),
        lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
    )
    CondFunc(
        "torch.instance_norm",
        lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
            input,
            weight
            if weight is not None
            else torch.ones(input.size()[1], device=input.device),
            bias
            if bias is not None
            else torch.zeros(input.size()[1], device=input.device),
            *args,
            **kwargs,
        ),
        lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
    )

    # Functions with dtype errors:
    CondFunc(
        "torch.nn.modules.GroupNorm.forward",
        lambda orig_func, self, input: orig_func(
            self, input.to(self.weight.data.dtype)
        ),
        lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
    )
    CondFunc(
        "torch.nn.modules.linear.Linear.forward",
        lambda orig_func, self, input: orig_func(
            self, input.to(self.weight.data.dtype)
        ),
        lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
    )
    CondFunc(
        "torch.nn.modules.conv.Conv2d.forward",
        lambda orig_func, self, input: orig_func(
            self, input.to(self.weight.data.dtype)
        ),
        lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
    )
    CondFunc(
        "torch.nn.functional.layer_norm",
        lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(
            input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs
        ),
        lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight
        is not None
        and input.dtype != weight.data.dtype,
    )

    # Diffusers Float64 (ARC GPUs doesn't support double or Float64):
    if not torch.xpu.has_fp64_dtype():
        CondFunc(
            "torch.from_numpy",
            lambda orig_func, ndarray: orig_func(ndarray.astype("float32")),
            lambda orig_func, ndarray: ndarray.dtype == float,
        )

    # Broken functions when torch.cuda.is_available is True:
    CondFunc(
        "torch.utils.data.dataloader._BaseDataLoaderIter.__init__",
        lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
        lambda orig_func, *args, **kwargs: True,
    )

    # Functions that make compile mad with CondFunc:
    torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = (
        _shutdown_workers
    )
    torch.nn.DataParallel = DummyDataParallel
    torch.autocast = ipex_autocast
    torch.cat = torch_cat
    torch.linalg.solve = linalg_solve
    torch.nn.functional.interpolate = interpolate
    torch.backends.cuda.sdp_kernel = return_null_context