Spaces:
Runtime error
Runtime error
import torch | |
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import | |
# pylint: disable=protected-access, missing-function-docstring, line-too-long | |
original_torch_bmm = torch.bmm | |
def torch_bmm(input, mat2, *, out=None): | |
if input.dtype != mat2.dtype: | |
mat2 = mat2.to(input.dtype) | |
# ARC GPUs can't allocate more than 4GB to a single block, Slice it: | |
batch_size_attention, input_tokens, mat2_shape = ( | |
input.shape[0], | |
input.shape[1], | |
mat2.shape[2], | |
) | |
block_multiply = input.element_size() | |
slice_block_size = input_tokens * mat2_shape / 1024 / 1024 * block_multiply | |
block_size = batch_size_attention * slice_block_size | |
split_slice_size = batch_size_attention | |
if block_size > 4: | |
do_split = True | |
# Find something divisible with the input_tokens | |
while (split_slice_size * slice_block_size) > 4: | |
split_slice_size = split_slice_size // 2 | |
if split_slice_size <= 1: | |
split_slice_size = 1 | |
break | |
else: | |
do_split = False | |
split_2_slice_size = input_tokens | |
if split_slice_size * slice_block_size > 4: | |
slice_block_size2 = split_slice_size * mat2_shape / 1024 / 1024 * block_multiply | |
do_split_2 = True | |
# Find something divisible with the input_tokens | |
while (split_2_slice_size * slice_block_size2) > 4: | |
split_2_slice_size = split_2_slice_size // 2 | |
if split_2_slice_size <= 1: | |
split_2_slice_size = 1 | |
break | |
else: | |
do_split_2 = False | |
if do_split: | |
hidden_states = torch.zeros( | |
input.shape[0], | |
input.shape[1], | |
mat2.shape[2], | |
device=input.device, | |
dtype=input.dtype, | |
) | |
for i in range(batch_size_attention // split_slice_size): | |
start_idx = i * split_slice_size | |
end_idx = (i + 1) * split_slice_size | |
if do_split_2: | |
for i2 in range( | |
input_tokens // split_2_slice_size | |
): # pylint: disable=invalid-name | |
start_idx_2 = i2 * split_2_slice_size | |
end_idx_2 = (i2 + 1) * split_2_slice_size | |
hidden_states[ | |
start_idx:end_idx, start_idx_2:end_idx_2 | |
] = original_torch_bmm( | |
input[start_idx:end_idx, start_idx_2:end_idx_2], | |
mat2[start_idx:end_idx, start_idx_2:end_idx_2], | |
out=out, | |
) | |
else: | |
hidden_states[start_idx:end_idx] = original_torch_bmm( | |
input[start_idx:end_idx], mat2[start_idx:end_idx], out=out | |
) | |
else: | |
return original_torch_bmm(input, mat2, out=out) | |
return hidden_states | |
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention | |
def scaled_dot_product_attention( | |
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False | |
): | |
# ARC GPUs can't allocate more than 4GB to a single block, Slice it: | |
if len(query.shape) == 3: | |
batch_size_attention, query_tokens, shape_four = query.shape | |
shape_one = 1 | |
no_shape_one = True | |
else: | |
shape_one, batch_size_attention, query_tokens, shape_four = query.shape | |
no_shape_one = False | |
block_multiply = query.element_size() | |
slice_block_size = ( | |
shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply | |
) | |
block_size = batch_size_attention * slice_block_size | |
split_slice_size = batch_size_attention | |
if block_size > 4: | |
do_split = True | |
# Find something divisible with the shape_one | |
while (split_slice_size * slice_block_size) > 4: | |
split_slice_size = split_slice_size // 2 | |
if split_slice_size <= 1: | |
split_slice_size = 1 | |
break | |
else: | |
do_split = False | |
split_2_slice_size = query_tokens | |
if split_slice_size * slice_block_size > 4: | |
slice_block_size2 = ( | |
shape_one * split_slice_size * shape_four / 1024 / 1024 * block_multiply | |
) | |
do_split_2 = True | |
# Find something divisible with the batch_size_attention | |
while (split_2_slice_size * slice_block_size2) > 4: | |
split_2_slice_size = split_2_slice_size // 2 | |
if split_2_slice_size <= 1: | |
split_2_slice_size = 1 | |
break | |
else: | |
do_split_2 = False | |
if do_split: | |
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) | |
for i in range(batch_size_attention // split_slice_size): | |
start_idx = i * split_slice_size | |
end_idx = (i + 1) * split_slice_size | |
if do_split_2: | |
for i2 in range( | |
query_tokens // split_2_slice_size | |
): # pylint: disable=invalid-name | |
start_idx_2 = i2 * split_2_slice_size | |
end_idx_2 = (i2 + 1) * split_2_slice_size | |
if no_shape_one: | |
hidden_states[ | |
start_idx:end_idx, start_idx_2:end_idx_2 | |
] = original_scaled_dot_product_attention( | |
query[start_idx:end_idx, start_idx_2:end_idx_2], | |
key[start_idx:end_idx, start_idx_2:end_idx_2], | |
value[start_idx:end_idx, start_idx_2:end_idx_2], | |
attn_mask=attn_mask[ | |
start_idx:end_idx, start_idx_2:end_idx_2 | |
] | |
if attn_mask is not None | |
else attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
) | |
else: | |
hidden_states[ | |
:, start_idx:end_idx, start_idx_2:end_idx_2 | |
] = original_scaled_dot_product_attention( | |
query[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
key[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
value[:, start_idx:end_idx, start_idx_2:end_idx_2], | |
attn_mask=attn_mask[ | |
:, start_idx:end_idx, start_idx_2:end_idx_2 | |
] | |
if attn_mask is not None | |
else attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
) | |
else: | |
if no_shape_one: | |
hidden_states[ | |
start_idx:end_idx | |
] = original_scaled_dot_product_attention( | |
query[start_idx:end_idx], | |
key[start_idx:end_idx], | |
value[start_idx:end_idx], | |
attn_mask=attn_mask[start_idx:end_idx] | |
if attn_mask is not None | |
else attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
) | |
else: | |
hidden_states[ | |
:, start_idx:end_idx | |
] = original_scaled_dot_product_attention( | |
query[:, start_idx:end_idx], | |
key[:, start_idx:end_idx], | |
value[:, start_idx:end_idx], | |
attn_mask=attn_mask[:, start_idx:end_idx] | |
if attn_mask is not None | |
else attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
) | |
else: | |
return original_scaled_dot_product_attention( | |
query, | |
key, | |
value, | |
attn_mask=attn_mask, | |
dropout_p=dropout_p, | |
is_causal=is_causal, | |
) | |
return hidden_states | |
def attention_init(): | |
# ARC GPUs can't allocate more than 4GB to a single block: | |
torch.bmm = torch_bmm | |
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention | |