Spaces:
Running
Running
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory, ConversationSummaryMemory | |
from langchain.chat_models import ChatOpenAI | |
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
import os | |
import sys | |
from langchain.schema import ( | |
AIMessage, | |
HumanMessage, | |
SystemMessage | |
) | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate | |
#embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') | |
embeddings = OpenAIEmbeddings(api_key='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') | |
#vectordb=Chroma.from_documents(document_chunks,embedding=embeddings, persist_directory='./ai_vocacional_v2') | |
vectordb = Chroma(persist_directory="./ai_vocacional_v2", embedding_function=embeddings) | |
llm=ChatOpenAI(temperature=0, model_name='gpt-4o-mini', api_key='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') | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', | |
return_messages=True) | |
general_system_template = r""" | |
Eres un asistente AI avanzado especializado en asesorar a alumnos con su ingreso a la universidad. | |
Toma los siguientes documentos de contexto {context} y responde únicamente basado en este contexto. | |
""" | |
general_user_template = "Pregunta:```{question}```" | |
messages = [ | |
SystemMessagePromptTemplate.from_template(general_system_template), | |
HumanMessagePromptTemplate.from_template(general_user_template) | |
] | |
qa_prompt = ChatPromptTemplate.from_messages( messages ) | |
pdf_qa = ConversationalRetrievalChain.from_llm( | |
llm = llm, | |
retriever=vectordb.as_retriever(search_kwargs={'k':16}) | |
, combine_docs_chain_kwargs={'prompt': qa_prompt}, | |
memory = memory#,max_tokens_limit=4000 | |
) | |
#Clarification: Si la pregunta del usuario es vaga o le faltan detalles importantes para dar una respuseta, debes realizar preguntas de clarificación para entender sus necesidades y darle la asistencia adecuada. | |
#Constraints: Debes responder solamente con la informacion disponible y saludar solo una vez. En caso no tengas una respuesta o no estés seguro, no inventes respuesta. | |
import gradio as gr | |
# Define chat interface | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
chat_history = [] | |
def user(query, chat_history): | |
print("User query:", query) | |
print("Chat history:", chat_history) | |
# Convert chat history to list of tuples | |
chat_history_tuples = [] | |
for message in chat_history: | |
chat_history_tuples.append((message[0], message[1])) | |
# Get result from QA chain | |
result = pdf_qa({"question": query})#, "chat_history": chat_history_tuples}) | |
# Append user message and response to chat history | |
chat_history.append((query, result["answer"])) | |
print("Updated chat history:", chat_history) | |
return gr.update(value=""), chat_history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch() |