Spaces:
Running
Running
File size: 2,104 Bytes
ab2b897 bffc737 e3dce71 ab2b897 92a8e26 be31eba bffc737 ab2b897 083757a bffc737 ab2b897 be31eba bffc737 be31eba bffc737 ab2b897 be31eba bffc737 ab2b897 bffc737 be31eba 083757a be31eba bffc737 ab2b897 bffc737 ab2b897 bffc737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
#%%
from transformers import pipeline
import gradio as gr
import os
#%%
whisper = pipeline(model='jlvdoorn/whisper-large-v2-atco2-asr-atcosim', use_auth_token=os.environ['HUGGINGFACE_TOKEN'])
# bert_atco_ner = pipeline(model='Jzuluaga/bert-base-ner-atc-en-atco2-1h')
#%%
def transcribe(audio_file):
if audio_file is not None:
return whisper(audio_file)['text']
else:
return 'There was no audio to transcribe...'
#%%
# def extractCallSignCommand(transcription):
# if type(transcription) is str:
# result = bert_atco_ner(transcription)
# callsigns = []
# commands = []
# values = []
# for item in result:
# if 'callsign' in item['entity']:
# callsigns.append(item['word'])
# if 'command' in item['entity']:
# commands.append(item['word'])
# if 'value' in item['entity']:
# values.append(item['word'])
# return 'Callsigns: ' + ', '.join(callsigns) + '\nCommands: ' + ', '.join(commands) + '\nValues: ' + ', '.join(values)
# else:
# return 'There was no transcription to extract a callsign or command from...'
#%%
# def transcribeAndExtract(audio_mic, audio_file, transcribe_only):
# transcription = transcribe(audio_mic, audio_file)
# if not transcribe_only:
# callSignCommandValues = extractCallSignCommand(transcription)
# else:
# callSignCommandValues = ''
# return transcription, callSignCommandValues
#%%
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source='upload', type='filepath'),
outputs=gr.Text(label='Transcription'),
title='Whisper Large v2 - ATCO2-ASR-ATCOSIM',
description='This demo will transcribe ATC audio files by using the Whisper Large v2 model fine-tuned on the ATCO2 and ATCOSIM datasets. Further it uses a Named Entity Recognition model to extract callsigns, commands and values from the transcription. This model is based on Google\'s BERT model and fine-tuned on the ATCO2 dataset.',
)
#%%
iface.launch() |