viz_bdpc / app.py
jordyvl's picture
Local test functional
7568689
raw
history blame
5.06 kB
import os
import gradio as gr
from collections import OrderedDict
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import time
import tempfile
import PyPDF2
import pdf2image
from datasets import load_dataset
MAX_PAGES = 50
MAX_PDF_SIZE = 100000000 # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150
def equal_image_grid(images):
def compute_grid(n, max_cols=6):
equalDivisor = int(n**0.5)
cols = min(equalDivisor, max_cols)
rows = equalDivisor
if rows * cols >= n:
return rows, cols
cols += 1
if rows * cols >= n:
return rows, cols
while rows * cols < n:
rows += 1
return rows, cols
# assert len(images) == rows*cols
rows, cols = compute_grid(len(images))
# rescaling to min width [height padding]
images = [im for im in images if (im.height > 0) and (im.width > 0)] # could be NA
min_width = min(im.width for im in images)
images = [im.resize((min_width, int(im.height * min_width / im.width)), resample=Image.BICUBIC) for im in images]
w, h = max([img.size[0] for img in images]), max([img.size[1] for img in images])
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(images):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def add_pagenumbers(im_list, height_scale=40):
def add_pagenumber(image, i):
width, height = image.size
draw = ImageDraw.Draw(image)
fontsize = int((width * height) ** (0.5) / height_scale)
font = ImageFont.truetype("Arial.ttf", fontsize)
margin = int(2 * fontsize)
draw.text(
(width - margin, height - margin),
str(i + 1),
fill="#D00917",
font=font,
spacing=4,
align="right",
)
for i, image in enumerate(im_list):
add_pagenumber(image, i)
def pdf_to_grid(pdf_path):
reader = PyPDF2.PdfReader(pdf_path)
reached_page_limit = False
images = []
try:
for p, page in enumerate(reader.pages):
if reached_page_limit:
break
for image in page.images:
im = Image.open(BytesIO(image.data))
if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
continue
images.append(im)
except Exception as e:
print(f"{pdf_path} PyPDF get_images {e}")
images = pdf2image.convert_from_bytes(pdf_path)
# simpler but slower
# images = pdf2image.convert_from_path(pdf_path)
if len(images) == 0:
return None
add_pagenumbers(images)
return equal_image_grid(images)
def main(dataset, label):
# to get different samples, use timestamp as seed
timestamp = time.time()
seed = int(timestamp * 1000) % 1000000
shuffled_dataset = DATASETS[dataset].shuffle(buffer_size=10, seed=seed)
# first get PDF file
for sample in shuffled_dataset:
label_column = "label" if "label" in sample else "labels"
filelabel = _CLASSES[sample[label_column]]
if label and filelabel != label:
continue
pdf_path = sample["file"]
grid = pdf_to_grid(BytesIO(pdf_path))
if grid is None:
continue
PDF = tempfile.NamedTemporaryFile(suffix=".pdf")
PDF.write(pdf_path)
return filelabel, grid, pdf_path
_CLASSES = [
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific report",
"scientific publication",
"specification",
"file folder",
"news article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo",
''
]
# load both datasets in memory? --> easier retrieval afterwards with seed index based on pressing button
DATASETS = OrderedDict(
{
"rvl_cdip": load_dataset("bdpc/rvl_cdip_mp", split="test", streaming=True),
"rvl_cdip_N": load_dataset("bdpc/rvl_cdip_n_mp", split="test", streaming=True),
}
)
meta_cats = {"dataset": ["rvl_cdip", "rvl_cdip_N"], "label": _CLASSES}
sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()]
slider_defaults = [sliders[0].value, None]
# test
# l, im, f = main(*slider_defaults)
outputs = [
gr.Textbox(label="label"),
gr.Image(label="image grid of PDF"),
gr.File(label="PDF"),
]
DESCRIPTION = """
Visualize PDF samples from multi-page (PDF) document classification datasets @ https://huggingface.co/datasets/bdpc
- **dataset**: dataset name
- **label**: label name
The first time that the app is launched, it will download the datasets, which can take a few minutes.
For fastest response, choose the rvl_cdip_N dataset, which is considerably smaller to iterate over.
"""
iface = gr.Interface(
fn=main,
inputs=sliders,
outputs=outputs,
description=DESCRIPTION,
title="Beyond Document Page Classification: Examples",
)
iface.launch(share=True)