File size: 144,840 Bytes
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
0c212bd
 
 
1e2f54d
0c212bd
 
1e2f54d
 
309d907
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
 
 
 
05e5fac
ba69ad8
05e5fac
ba69ad8
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
ff4573f
c3a2666
ff4573f
c3a2666
ff4573f
c3a2666
ff4573f
c3a2666
ff4573f
c3a2666
ff4573f
c3a2666
ff4573f
ba69ad8
 
1e2f54d
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eefd88
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef18338
 
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bacc26
 
c3a2666
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
 
 
 
 
 
ef18338
 
 
c3a2666
 
 
 
 
 
1e2f54d
 
05e5fac
 
1e2f54d
 
 
 
 
 
 
c3a2666
 
1e2f54d
ce4ad6d
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
1e2f54d
 
 
 
 
 
 
 
ef18338
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce4ad6d
1e2f54d
 
 
ce4ad6d
1e2f54d
 
 
 
 
 
 
 
 
c3a2666
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
c3a2666
ba69ad8
c3a2666
ba69ad8
c3a2666
ba69ad8
c3a2666
ba69ad8
c3a2666
ba69ad8
c3a2666
ba69ad8
c3a2666
ba69ad8
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
ce4ad6d
1e2f54d
 
ce4ad6d
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eefd88
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f6f1d
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
0c212bd
1e2f54d
 
 
 
 
 
 
0c212bd
 
 
 
444f117
 
 
 
 
 
 
 
 
 
 
 
0c212bd
07c774d
9bb2916
444f117
 
 
0c212bd
 
 
 
 
444f117
0c212bd
444f117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07c774d
9bb2916
444f117
 
 
 
 
 
 
 
 
 
 
07c774d
9bb2916
444f117
 
 
 
 
 
 
 
 
0c212bd
444f117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
444f117
 
 
 
05e5fac
444f117
05e5fac
444f117
 
07c774d
9bb2916
444f117
05e5fac
444f117
 
 
 
 
 
 
 
 
 
07c774d
9bb2916
444f117
 
 
 
 
 
 
 
 
 
07c774d
0c212bd
 
 
 
05e5fac
0c212bd
1e2f54d
 
 
 
0c212bd
05e5fac
0c212bd
1e2f54d
 
 
 
0c212bd
1e2f54d
0c212bd
1e2f54d
0c212bd
1e2f54d
0c212bd
 
 
1e2f54d
0c212bd
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
0c212bd
 
1e2f54d
0c212bd
1e2f54d
0c212bd
 
1e2f54d
0c212bd
 
 
 
 
1e2f54d
0c212bd
 
1e2f54d
0c212bd
 
 
 
1e2f54d
0c212bd
1e2f54d
0c212bd
1e2f54d
0c212bd
444f117
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
 
 
 
0c212bd
 
1e2f54d
0c212bd
 
 
 
 
 
 
 
 
 
 
1e2f54d
 
 
 
 
0c212bd
05e5fac
1e2f54d
0c212bd
1e2f54d
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
ce4ad6d
1e2f54d
 
 
 
ce4ad6d
 
 
1e2f54d
 
 
 
 
 
ce4ad6d
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
ce4ad6d
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
ce4ad6d
1e2f54d
 
 
 
ce4ad6d
 
 
1e2f54d
 
 
 
 
 
ce4ad6d
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
ce4ad6d
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
0c212bd
1e2f54d
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
0c212bd
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
 
 
 
 
1e2f54d
 
05e5fac
1e2f54d
05e5fac
 
1e2f54d
05e5fac
 
 
 
 
 
1e2f54d
 
05e5fac
1e2f54d
c3a2666
05e5fac
c3a2666
05e5fac
c3a2666
05e5fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
 
 
05e5fac
1e2f54d
05e5fac
 
 
 
1e2f54d
05e5fac
 
 
 
 
 
1e2f54d
05e5fac
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
05e5fac
 
1e2f54d
05e5fac
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
1e2f54d
05e5fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
ba69ad8
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
 
 
1e2f54d
309d907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
c3a2666
1e2f54d
 
 
 
 
 
0c212bd
 
1e2f54d
 
 
 
 
 
 
 
 
c3a2666
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a2666
 
1e2f54d
c3a2666
 
 
 
 
 
1e2f54d
c3a2666
 
 
 
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef18338
 
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
ef18338
 
 
 
 
 
1e2f54d
c3a2666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef18338
 
c3a2666
 
 
 
 
9eefd88
c3a2666
 
 
ef18338
 
c3a2666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e5fac
1e2f54d
05e5fac
1e2f54d
 
9ead96a
05e5fac
9ead96a
05e5fac
 
 
 
 
1e2f54d
f29399f
ad6b406
0b8f68a
f29399f
1e2f54d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad17203
1e2f54d
309d907
 
1e2f54d
 
 
 
 
 
 
 
41176a4
0895a00
1e2f54d
 
 
 
 
 
c3a2666
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
import os

from transformers import file_utils
print(file_utils.default_cache_path)

import pandas as pd
from tqdm import tqdm
from gliner import GLiNER
import logging

import time

import sys

from transformers import pipeline, AutoTokenizer, AutoModel
from transformers.pipelines.pt_utils import KeyDataset
from sentence_transformers.util import cos_sim
from typing import Dict

from concurrent.futures import ThreadPoolExecutor, as_completed
from collections import Counter

import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Device: {device}...")
if device.type == "cuda":
    print("GPU number:", torch.cuda.current_device())

import datasets

import argparse
import json
import random
import numpy as np
import requests

from langchain.text_splitter import TokenTextSplitter

from virtuosoQueryRest import sparqlQuery
import gradio as gr
import re

from common import strtobool, split_camel_case, chunk_tokens, update_nested_dict, cleanInputText, token_counter, encoding_getter, extract_words, all_words_in_list, row_to_dict_string, strip_quotes, rescale_exponential_to_logarithmic



examples = [
["He said the disease was 1st detected to have spread to Malaysia from Africa in 1997. " , None],
["He said the disease which was 1st detected in Johor had spread to Negeri Sembilan, Melaka, Perak, Selangor and the latest Kedah.  He said the disease was 1st detected to have spread to Malaysia from Africa in 1997. ", None],
["The Health Ministry has detected about 4000 suspected chikungunya cases nationwide this year [2008], Minister Datuk Liow Tiong Lai said Wednesday [17 Dec 2008]. ", None],
["The Health Ministry has detected about 4000 suspected chikungunya cases nationwide this year [2008], Minister Datuk Liow Tiong Lai said Wednesday [17 Dec 2008]. He said the disease which was 1st detected in Johor had spread to Negeri Sembilan, Melaka, Perak, Selangor and the latest Kedah. \"So far, the chikungunya disease is still under control nationwide,\" he told reporters after visiting Sultanah Nur Zahirah Hospital here. Present was Terengganu Health Director Dr. Nordiyanah Hassan. Liow said that so far, there is no specific medicine to treat the chikungunya fever disease spread by _Aedes_ mosquito. \"So, I would like to call on the public to be careful particularly during the wet season now because _Aedes_ mosquito is easy to breed,\" he said. To contain the spread of the disease, he said, the ministry had taken several measures including intensifying the campaign to rid of _Aedes_ mosquito and holding lectures on the outbreak. He said the disease was 1st detected to have spread to Malaysia from Africa in 1997. Meanwhile, he said 63 health projects costing RM458 million [USD 131 230 211] had been approved for implementation in Terengganu under the Ninth Malaysia Plan and some had started.", None],
["Carcinoma", None],
["The doctor diagnosed the patient with basal cell carcinoma, a common type of skin cancer.", None],
["West Nile virus", None],
["Legionellosis", None],
["Eight years ago I started with Fosamax for 3-4 years and then took Actonel. In March, I decided not to take Actonel any longer. I had been on it for too long and was fearful of esophageal cancer and bone breakage. Now my doctor wants me to take the Prolia injections, which I am not going to do. I am not going to continue with any drugs. My bone density recently done was in the minuses. I do work with a personal trainer and execise daily. I am searching for alternative ways to deal with this problem.", None],
["Does Chicago have any stores and does Joe live here?", None],
["Cholera has been reported every week since November 1994. By 5 November 1995 at total of 12,344 with 245 deaths have been notified. Of these, 879 cases with 4 deaths were reported for the period 9 October to 5 November 1995. Control efforts have not succeeded in preventing the spread of the epidemic and when cases were detected on Sao Nicolau and Sal Islands in the period 9 October to 5 November all nine inhabited islands of Cap Verde had become infected. The last cholera epidemic in Cap Verde occurred in 1979. (See also Weekly Epidemiological Record No. 44, 3 November 1995) Côte d'Ivoire: A cholera outbreak which started in September 1995 caused 2,027 cases and 150 deaths up to 12 November 1995. The first cases were reported in Department de l'Ouest on 18 September 1995. Cases were subsequently reported in Department de Nord and most recently in Department du Centre and Department de Sud. The WHO Representative assisted in the organization of a team to visit the area and evaluate the situation as well as arranging for medical supplies. (1.12.95) Iran, Islamic Republic of,: Kordestan Province has been declared free of cholera. (1.12.95) Iraq: An outbreak of cholera reported from Sulaimaniyah Governorate in Northern Iraq has resulted in 519 cases, 264 of which have been confirmed, and 3 deaths to date. Vibrio cholerae O1 serotype Ogawa has been isolated. At the request of the Iraqi Ministry of Health, a WHO consultant has been sent to the area to assess and monitor the situation, provide guidance to the health authorities, and coordinate inputs by non-governmental organizations. WHO has also made available essential treatment supplies. An intensive media campaign to raise public awareness about essential preventive measures has been successful in containing the spread of the outbreak. (1.12.95) Senegal: Despite the fact that cholera has been endemic in countries bordering Senegal for the past two years, no cases were reported from Senegal until mid- August 1995. Between 15 August and 17 November 1995, 852 case and 43 deaths were notified. A further 731 cases with 37 deaths have been reported for the period 1 September to 12 November. Most cases were in the Departments of Dakar and Pikine in the Dakar Region and recently also Departments of Mbacke and Touba in Diourbel Region. ", None],
]



#models_List = ["FacebookAI/xlm-roberta-large-finetuned-conll03-english",  "Babelscape/wikineural-multilingual-ner",  "blaze999/Medical-NER", "urchade/gliner_large-v2.1", "urchade/gliner_large_bio-v0.1", "NCBO/BioPortal" ] # "urchade/gliner_large-v2.1",  "knowledgator/gliner-multitask-large-v0.5"
models_List = ["Babelscape/wikineural-multilingual-ner",  "urchade/gliner_large-v2.1", "NCBO/BioPortal" ] # "urchade/gliner_large-v2.1",  "knowledgator/gliner-multitask-large-v0.5"
#models_List = ["NCBO/BioPortal" ]

categories_List = ["MED","LOC","PER","ORG","DATE","MISC"]

modelGliner=None
modelGlinerBio=None

num_cores_Gliner_forDemo = 0  # 0 means use the GPU for Gliner !
tokenizerGliner = AutoTokenizer.from_pretrained('microsoft/deberta-v3-large')

POSSIBLE_KGchoices_List = ["AEO", "BFO", "BIM", "BCGO", "CL", "CHIRO", "CHEBI", "DCM", "FMA", "GO", "GENO",
             "GeoSPARQL", "HL7", "DOID", "HP", "HP_O", "IDO", "IAO", "ICD10", "LOINC", "MESH",
             "MONDO", "NCIT", "NCBITAXON", "NCBITaxon_", "NIFCELL", "NIFSTD", "GML", "OBCS", "OCHV", "OHPI",
             "OPB", "TRANS", "PLOSTHES", "RADLEX", "RO", "STY", "SO", "SNOMED", "STATO",
             "SYMP", "FoodOn", "UBERON", "VO", "OGMS", "EuroSciVoc"]

ONLY_Ontologies_OnBIOPORTAL = ["AEO", "BCGO", "BFO", "BIM", "CHEBI", "CHIRO", "CL", "DCM", "DOID", "FMA", "FOODON", "GENO", "GML", "GO", "GEOSPARQL", "HL7", "HP", "HP_O", "IAO", "ICD10", "IDO", "LOINC", "MESH", "MONDO", "NCBITAXON", "NCIT", "NIFCELL", "NIFSTD", "OBCS", "OCHV", "OHPI", "OPB", "PLOSTHES", "RADLEX", "OBOREL", "SNOMEDCT", "SO", "STATO", "STY", "SYMP", "PTRANS", "UBERON", "VO", "OGMS"]

encod = encoding_getter('microsoft/deberta-v3-large')
text_splitter = TokenTextSplitter(
    # separators=separators,
    encoding_name=encod.name,
    chunk_size=80000,
    chunk_overlap=50,
    length_function=len,
    add_start_index=True,
)

pipe_dict = {}
for modelName in models_List:
    tsk = "token-classification"
    if (("/gliner" in modelName) == False) and (("NCBO" in modelName) == False):
        pipe = pipeline(
            tsk,
            model=modelName,
            aggregation_strategy="simple",
            device=device,
        )
        pipe_dict[modelName] = pipe
    elif ("/gliner" in modelName):
        if not tokenizerGliner:
            tokenizerGliner = AutoTokenizer.from_pretrained('microsoft/deberta-v3-large')
        if "_bio-" in modelName:
            if num_cores_Gliner_forDemo > 0:
                modelGlinerBio = GLiNER.from_pretrained(modelName)  # "urchade/gliner_large_bio-v0.1")
            else:
                modelGlinerBio = GLiNER.from_pretrained(modelName, map_location=device)
        else:
            if num_cores_Gliner_forDemo > 0:
                modelGliner = GLiNER.from_pretrained(
                    modelName)  # "knowledgator/gliner-multitask-large-v0.5" - "urchade/gliner_large-v2.1"
            else:
                modelGliner = GLiNER.from_pretrained(modelName, map_location=device)


# 1. Load the model and tokenizer
model_id_Retriever = 'mixedbread-ai/mxbai-embed-large-v1'
tokenizer_Retriever = AutoTokenizer.from_pretrained(model_id_Retriever)
modelRetriever = AutoModel.from_pretrained(model_id_Retriever)


def RAG_retrieval_Base(queryText, passages, min_threshold=0.0, max_num_passages=None):
    similarities = retrievePassageSimilarities(queryText, passages)

    # Create a DataFrame
    df = pd.DataFrame({
        'Passage': passages,
        'Similarity': similarities.flatten()  # Flatten the similarity tensor/array to ensure compatibility
    })

    # Filter the DataFrame based on the similarity threshold
    df_filtered = df[df['Similarity'] >= min_threshold]

    # If max_num_passages is specified, limit the number of passages returned
    if max_num_passages is not None:
        df_filtered = df_filtered.nlargest(max_num_passages, 'Similarity')

    df_filtered = df_filtered.sort_values(by='Similarity', ascending=False)

    # Return the filtered DataFrame
    return df_filtered


def RAG_retrieval_Percentile(queryText, passages, percentile=90, max_num_passages=None, min_threshold=0.5):
    # Encoding and similarity computation remains the same

    similarities = retrievePassageSimilarities(queryText, passages)

    # Determine threshold based on percentile
    threshold = np.percentile(similarities.flatten(), percentile)

    # Create a DataFrame
    df = pd.DataFrame({
        'Passage': passages,
        'Similarity': similarities.flatten()
    })

    # Filter using percentile threshold
    df_filtered = df[df['Similarity'] >= threshold]

    if min_threshold:
        # Filter the DataFrame also on min similarity threshold
        df_filtered = df[df['Similarity'] >= min_threshold]

    # If max_num_passages is specified, limit the number of passages returned
    if max_num_passages is not None:
        df_filtered = df_filtered.nlargest(max_num_passages, 'Similarity')

    # Sort by similarity
    df_filtered = df_filtered.sort_values(by='Similarity', ascending=False)

    return df_filtered


def RAG_retrieval_TopK(queryText, passages, top_fraction=0.1, max_num_passages=None, min_threshold=0.5):
    # Encoding and similarity computation remains the same

    similarities = retrievePassageSimilarities(queryText, passages)

    # Calculate the number of passages to select based on top fraction
    num_passages_TopFraction = max(1, int(top_fraction * len(passages)))

    # Create a DataFrame
    df = pd.DataFrame({
        'Passage': passages,
        'Similarity': similarities.flatten()
    })

    # Select the top passages dynamically
    df_filtered = df.nlargest(num_passages_TopFraction, 'Similarity')

    if min_threshold:
        # Filter the DataFrame also on min similarity threshold
        df_filtered = df[df['Similarity'] >= min_threshold]

    # If max_num_passages is specified, limit the number of passages returned
    if max_num_passages is not None:
        df_filtered = df_filtered.nlargest(max_num_passages, 'Similarity')

    # Sort by similarity
    df_filtered = df_filtered.sort_values(by='Similarity', ascending=False)

    return df_filtered



# Define the transform_query function
def transform_query(queryText: str) -> str:
    """For retrieval, add the prompt for queryText (not for documents)."""
    return f'Represent this sentence for searching relevant passages: {queryText}'


# Define the pooling function
def pooling(outputs: torch.Tensor, inputs: Dict, strategy: str = 'cls') -> np.ndarray:
    if strategy == 'cls':
        outputs = outputs[:, 0]
    elif strategy == 'mean':
        outputs = torch.sum(
            outputs * inputs["attention_mask"][:, :, None], dim=1
        ) / torch.sum(inputs["attention_mask"], dim=1, keepdim=True)
    else:
        raise NotImplementedError
    return outputs.detach().cpu().numpy()


def retrievePassageSimilarities(queryText, passages):
    # Create the docs list by adding the transformed queryText and then the passages
    docs = [transform_query(queryText)] + passages

    # 2. Encode the inputs
    inputs = tokenizer_Retriever(docs, padding=True, return_tensors='pt')

    # Move inputs to the right device using accelerator
    inputs = {k: v.to(device) for k, v in inputs.items()}
    outputs = modelRetriever(**inputs).last_hidden_state
    embeddings = pooling(outputs, inputs, 'cls')

    similarities = cos_sim(embeddings[0], embeddings[1:])

    # print('similarities:', similarities)

    return similarities



def process_row_Gliner(args, tokenizerGliner, modelGlinerBio, modelGliner, glinerlabels, row):
    context_to_annotate = row[args.source_column]
    tokens = tokenizerGliner.tokenize(context_to_annotate)

    entities = []
    offset = 0

    if "gliner_large_bio" in args.model_id:
        max_chunk_length = modelGlinerBio.config.max_len
    else:
        max_chunk_length = modelGliner.config.max_len

    for chunk in chunk_tokens(tokens, (max_chunk_length - 1)):
        chunk_text = tokenizerGliner.convert_tokens_to_string(chunk)
        if "gliner_large_bio" in args.model_id:
            chunk_entities = modelGlinerBio.predict_entities(chunk_text, glinerlabels,
                                                             threshold=args.entities_filter_threshold)
        else:
            chunk_entities = modelGliner.predict_entities(chunk_text, glinerlabels,
                                                          threshold=args.entities_filter_threshold)

        adjusted_entities = []
        for entity in chunk_entities:
            adjusted_entity = {
                'text': entity['text'],
                'score': entity['score'],
                'start': entity['start'] + offset,
                'end': entity['end'] + offset,
                'label': entity['label']
            }
            adjusted_entities.append(adjusted_entity)

        entities.extend(adjusted_entities)
        offset += len(chunk_text)

    if entities and isinstance(entities, list):
        for d in entities:
            d['entity_group'] = d.pop('label')
            d['word'] = d.pop('text')
            d['entity_group'] = d['entity_group'].upper()

    return row.name, entities


def parallel_process_df_Gliner(args, df, tokenizerGliner, modelGlinerBio, modelGliner, glinerlabels):
    results = []

    if args.num_cores_Gliner > 0:
        with ThreadPoolExecutor(max_workers=args.num_cores_Gliner) as executor:
            futures = [
                executor.submit(
                    process_row_Gliner, args, tokenizerGliner, modelGlinerBio, modelGliner, glinerlabels, row
                )
                for _, row in df.iterrows()
            ]

            for future in tqdm(futures):
                drm_idx, entities = future.result()
                df.at[drm_idx, 'annotation'] = entities

    else:
        # Apply the function to each row and extract only the entities part
        df['annotation'] = df.apply(
            lambda row: process_row_Gliner(args, tokenizerGliner, modelGlinerBio, modelGliner, glinerlabels, row)[1],
            axis=1
        )

    return df



def process_row_BioPortal_api(args, key_bioportal, row):

    #context_to_annotate = row[args.source_column]
    if isinstance(row, list) or isinstance(row, pd.Series):
        context_to_annotate = row[args.source_column]
    elif isinstance(row, str):
        context_to_annotate = row
    else:
        raise ValueError("Unsupported type for row. Expected list or string.")

    url=""
    if getattr(args, 'KG_restriction', None):

        # api call
        if strtobool(args.debug):
            print("--- BIOPORTAL: " + context_to_annotate)

        # args.KG_restriction exists and is not empty
        if strtobool(args.debug):
            print("KG_restriction is provided and not empty:", args.KG_restriction)

        onto_clauses = ""
        for choice in args.KG_restriction:
            if choice == "SNOMED":
                choice="SNOMEDCT"
            elif choice == "RO":
                choice = "OBOREL"
            elif choice == "TRANS":
                choice = "PTRANS"
            elif choice == "FoodOn":
                choice = "FOODON"
            elif choice == "GeoSPARQL":
                choice = "GEOSPARQL"
            # elif choice == "NCBITAXON":
            #     choice = "NCBITAXON,NCBITaxon_"
            elif choice == "NCBITaxon_":
                choice = "NCBITAXON"
            if choice in ONLY_Ontologies_OnBIOPORTAL:
                onto_clauses=onto_clauses+choice+","


        if onto_clauses and onto_clauses[-1] == ",":
            onto_clauses=onto_clauses[:-1]

        url = f"https://services.data.bioontology.org/annotatorplus/?text={context_to_annotate}&ontologies={onto_clauses}&longest_only=true&exclude_numbers=true&whole_word_only=true&exclude_synonyms=false&negation=false&experiencer=false&temporality=false&score_threshold=0&confidence_threshold=0&display_links=false&display_context=false&score=cvalue&apikey={key_bioportal}"

    else:
        # args.KG_restriction does not exist or is empty
        if strtobool(args.debug):
            print("--- BIOPORTAL: " + context_to_annotate)
            print("KG_restriction is not provided or empty - Consider all the KGs")

        url = f"https://services.data.bioontology.org/annotatorplus/?text={context_to_annotate}&ontologies=AEO,BFO,BIM,BCGO,CL,CHIRO,CHEBI,DCM,FMA,GO,GENO,GEOSPARQL,HL7,DOID,HP,HP_O,IDO,IAO,ICD10,LOINC,MESH,MONDO,NCIT,NCBITAXON,NIFCELL,NIFSTD,GML,OBCS,OCHV,OHPI,OPB,PTRANS,PLOSTHES,RADLEX,OBOREL,STY,SO,SNOMEDCT,STATO,SYMP,FOODON,UBERON,VO&longest_only=true&exclude_numbers=true&whole_word_only=true&exclude_synonyms=false&negation=false&experiencer=false&temporality=false&score_threshold=0&confidence_threshold=0&display_links=false&display_context=false&score=cvalue&apikey={key_bioportal}"


    response = requests.get(url)

    try:
        data = response.json()

        if not data:
            # nothing found from Bioportal
            return pd.DataFrame()

        dff = pd.DataFrame(data)
        dff = dff.drop(columns=['hierarchy', 'mappings'])

        # If the columns are dictionary-like, use pd.json_normalize:
        expanded_annotated_class = pd.json_normalize(dff['annotatedClass'])

        expanded_annotations = pd.DataFrame(dff['annotations'].tolist(), index=dff.index)
        expanded_annotations = pd.json_normalize(expanded_annotations[0])

        # Join the expanded columns back to the original DataFrame
        df_expanded = dff.drop(columns=['annotatedClass', 'annotations']).join(expanded_annotated_class).join(
            expanded_annotations)

        # Snomed id replacement because in our internal knolwedgebase we have this base uri
        df_expanded['@id'] = df_expanded['@id'].str.replace(
            "http://purl.bioontology.org/ontology/SNOMEDCT/",
            "http://snomed.info/id/"
        )

        return df_expanded


    except Exception as err:
        logging.error(
            f'ERROR ON BioPortal Annotator API Call\n\tError: {err}\n TextToAnnotate: {context_to_annotate}\n Have a check...')
        return pd.DataFrame()  # empty dataframe



def annotate(df, args, pipeInner, tokenizerGliner, modelGliner, modelGlinerBio, device="cpu"):

    if strtobool(args.debug):
        print("\nAnnotate using " + args.model_id)
        print("device=" + str(device))
        startAnnotate = time.time()

    if "gliner" in args.model_id:

        df['model'] = args.model_id
        df['annotation'] = None

        glinerlabels = ["location", "disease", "date", "numerical value", "number"]

        # Parallel CPU computation for Gliner:
        df = parallel_process_df_Gliner(args, df, tokenizerGliner, modelGlinerBio, modelGliner, glinerlabels)


        # for drm_idx, row in tqdm(df.iterrows()):
        #     context_to_annotate = row[args.source_column]
        #
        #     # Tokenize the text
        #     tokens = tokenizerGliner.tokenize(context_to_annotate)
        #
        #     # Process each chunk and predict entities
        #     entities = []
        #     offset = 0  # Initialize the offset
        #
        #     if "gliner_large_bio" in args.model_id:
        #         maxchunckslen=modelGlinerBio.config.max_len
        #     else:
        #         maxchunckslen = modelGliner.config.max_len
        #     for chunk in chunk_tokens(tokens, (maxchunckslen - 1)):
        #         # Convert tokens back to text for the chunk
        #         chunk_text = tokenizerGliner.convert_tokens_to_string(chunk)
        #         # Predict entities for the chunk
        #         if "gliner_large_bio" in args.model_id:
        #             chunk_entities = modelGlinerBio.predict_entities(chunk_text, glinerlabels, threshold=args.entities_filter_threshold)
        #         else:
        #             chunk_entities = modelGliner.predict_entities(chunk_text, glinerlabels, threshold=args.entities_filter_threshold)
        #
        #         # Adjust the start and end positions of entities to reflect their positions in the original text
        #         adjusted_entities = []
        #         for entity in chunk_entities:
        #             adjusted_entity = {
        #                 'text': entity['text'],
        #                 'score': entity['score'],
        #                 'start': entity['start'] + offset,
        #                 'end': entity['end'] + offset,
        #                 'label': entity['label']
        #             }
        #             adjusted_entities.append(adjusted_entity)
        #
        #         # Append adjusted entities to all_entities
        #         entities.extend(adjusted_entities)
        #
        #         # Update the offset for the next chunk by adding the length of the current chunk
        #         offset += len(chunk_text)
        #
        #     # Now `all entities` contains all entities with adjusted positions
        #     if entities and isinstance(entities, list):
        #
        #         # if strtobool(args.debug):
        #         #     for entity in entities:
        #         #         print(entity["text"], "=>", entity["label"])
        #
        #         for d in entities:
        #             d['entity_group'] = d.pop('label')  # Change 'label' to 'entity_group'
        #             d['word'] = d.pop('text')  # Change 'text' to 'word'
        #             d['entity_group'] = d['entity_group'].upper()
        #
        #         df.at[drm_idx, 'annotation'] = entities


        df_annot = df.explode('annotation').dropna(subset=['annotation']).reset_index(drop=True)

    elif "NCBO" in args.model_id:  #NCBO/BioPortal" annotator
        #https://data.bioontology.org/documentation#nav_annotator
        #https://bioportal.bioontology.org/annotatorplus

        #key_bioportal = ""
        #if args.bioportalkey_filename:
        #    fkeyname = args.bioportalkey_filename
        #    with open(fkeyname) as f:
        #        key_bioportal = f.read()
        key_bioportal = os.environ['key_bioportal']

        df_annot = pd.DataFrame()
        for drm_idx, row in tqdm(df.iterrows()):
            df_BioPortalAnnotation=process_row_BioPortal_api(args, key_bioportal, row)

            if not df_BioPortalAnnotation.empty:

                df_BioPortalAnnotation = df_BioPortalAnnotation.sort_values(
                    by=['from', 'text', 'score', 'matchType'], ascending=[True, True, False, False])

                df_biop_minimised = df_BioPortalAnnotation.copy()

                # Group the dataframe by "from" and "to" columns
                grouped_biop = df_biop_minimised.groupby(['from', 'to'])
                # Get the index of the row with the maximum score in each group
                idx_biop = grouped_biop['score'].idxmax()
                # Filter the dataframe using these indices
                df_max_score_biop = df_biop_minimised.loc[idx_biop]
                # Optional: Reset index if you want a clean index
                df_max_score_biop = df_max_score_biop.reset_index(drop=True)

                # Create the "pippo" column by grouping and collecting "@id" values
                pippo_lists = grouped_biop['@id'].apply(list).reset_index()

                # Merge the lists back into the df_max_score_biop by 'from' and 'to'
                df_max_score_biop = df_max_score_biop.merge(pippo_lists, on=['from', 'to'])

                # Rename the merged column to "pippo"
                df_max_score_biop = df_max_score_biop.rename(columns={'@id_x': '@id'})
                df_max_score_biop = df_max_score_biop.rename(columns={'@id_y': 'ALLURIScontextFromNCBO'})
                # The df_max_score_biop now contains the "pippo" column with lists of "@id" values.

                # Filter the dataframe to keep only rows where the score is greater than 3.0
                df_max_score_biop = df_max_score_biop[df_max_score_biop['score'] > 3.0]

                if "semantic_groups" not in df_max_score_biop.columns:
                    # Drop the '@id' column
                    df_max_score_biop["semantic_groups"] = None

                    # Specify the columns you want to keep
                columns_to_keep = ["score", "from", "to", "prefLabel", "text", "semantic_groups", "@id", "ALLURIScontextFromNCBO"]

                # Subset the dataframe to keep only the specified columns
                df_max_score_biop = df_max_score_biop[columns_to_keep]

                # Rename the specified columns
                df_max_score_biop = df_max_score_biop.rename(columns={"from": "start", "to": "end", "text": "word", "semantic_groups": "entity_group"})

                # Optional: Reset index if you want a clean index after filtering
                df_max_score_biop = df_max_score_biop.reset_index(drop=True)

                df_max_score_biop['score'] = df_max_score_biop['score'].round(2)

                # Each row of  "semantic_groups" --> 'entity_group' is a list of string ... keep only the first part if not NaN
                # df_max_score_biop['entity_group'] = df_max_score_biop['entity_group'].apply(lambda x: x[0] if pd.notna(x).all() else x)
                df_max_score_biop['entity_group'] = df_max_score_biop['entity_group'].apply(lambda x: x[0] if isinstance(x, list) and len(x) > 0 else (np.nan if x is None or (isinstance(x, float) and pd.isna(x)) else x))

                #df_max_score_biop = df_max_score_biop.dropna(subset=['entity_group'])

                all_empty_or_nan_or_empty_string = df_max_score_biop['entity_group'].replace('', pd.NA).isna().all()
                if not all_empty_or_nan_or_empty_string:
                    #print("Is the 'entity_group' column completely NaN, None, or empty strings?", all_empty_or_nan_or_empty_string)

                    # Identify the minimum score
                    min_score_biop = df_max_score_biop['score'].min()

                    # Apply filter to find rows where entity_group is None and score is the minimum one
                    conditionBiop = (df_max_score_biop['entity_group'].isna()) & (df_max_score_biop['score'] == min_score_biop)
                    df_max_score_biop = df_max_score_biop[~conditionBiop]

                # Replace all NaN values in 'entity_group' with 'BIOP'
                df_max_score_biop['entity_group'] = df_max_score_biop['entity_group'].fillna('BIOP')

                # To delete the columns "start" and "end"
                #df_max_score_biop = df_max_score_biop.drop(columns=['start', 'end', 'word', 'entity_group', 'score', 'prefLabel'])

                if not df_max_score_biop.empty:
                    row_df = pd.DataFrame([row] * len(df_max_score_biop), columns=row.index)
                    row_df['model'] = args.model_id  #'NCBO/BioPortal'
                    df_max_score_biop = pd.concat([row_df.reset_index(drop=True), df_max_score_biop.reset_index(drop=True)],
                                                  axis=1)
                    df_annot = pd.concat([df_annot, df_max_score_biop], ignore_index=True)


        #here I finish the for cycle


        if not df_annot.empty:

            mmax_score = df_annot['score'].max()
            mmin_score = df_annot['score'].min()

            if mmax_score == mmin_score:
                df_annot['score'] = 0.3
                df_annot.loc[df_annot['score'].notnull(), 'score'] = 0.7
            else:
                # Apply the transformation function
                #df_annot = rescale_exponential_to_linear(df_annot, 'score', new_min=0.5, new_max=1.0)
                df_annot = rescale_exponential_to_logarithmic(df_annot, 'score', new_min=0.7, new_max=1.0)

            columnsDict = ['start', 'end', 'word', 'entity_group', 'score', 'prefLabel']

            df_annot['annotation'] = df_annot.apply(row_to_dict_string, axis=1, columnsDict=columnsDict)

            # Convert JSON string to a dictionary, if needed
            df_annot['annotation'] = df_annot['annotation'].apply(
                lambda x: json.loads(x) if isinstance(x, str) else x
            )

            df_annot = df_annot.drop(columns=columnsDict)

    else:

        HF_dataset = datasets.Dataset.from_pandas(pd.DataFrame(data=df))

        # tsk = "token-classification"
        #
        # pipe = pipeline(
        #     tsk,
        #     model=args.model_id,
        #     aggregation_strategy="simple",
        #     device=device,
        # )

        if strtobool(args.debug):
            print('Annotating texts...')

        annotated_texts = [
            # out for out in tqdm(pipe(KeyDataset(HF_dataset, args.source_column), batch_size=args.batch_size))
            # out for out in tqdm(ner_pipeline(KeyDataset(HF_dataset, args.source_column), batch_size=args.batch_size))
            out for out in tqdm(pipeInner(KeyDataset(HF_dataset, args.source_column), batch_size=args.batch_size))
        ]

        if strtobool(args.debug):
            print('looping annotations...')


        df['model'] = args.model_id
        df['annotation'] = annotated_texts

        df_annot = df.explode('annotation').dropna(subset=['annotation']).reset_index(drop=True)

        # # Initialize an empty dataframe with the same columns as df
        # df_annot = pd.DataFrame(columns=df.columns.tolist()) #+ ['model', 'annotation'])
        #
        # for drm_idx, txt_ents in enumerate(tqdm(annotated_texts)):
        #
        #     filtered_entities = get_filtered_entities(txt_ents)
        #
        #     for x_ent in filtered_entities:
        #         # Create a new row with the annotation
        #         new_row = df.iloc[drm_idx].copy()
        #         new_row['model'] = args.model_id
        #         new_row['annotation'] = x_ent
        #         df_annot = pd.concat([df_annot, new_row.to_frame().T], ignore_index=True)  # Append the new row to the dataframe


    if strtobool(args.debug):
        endAnnotate = time.time()
        hours, rem = divmod(endAnnotate - startAnnotate, 3600)
        minutes, seconds = divmod(rem, 60)
        print("...end annotation - Time... {:0>2}:{:0>2}:{:05.2f}\n".format(int(hours), int(minutes), seconds))
        print('\n')

    return df_annot


def default_serializer(obj):
    if isinstance(obj, np.floating):
        return float(obj)
    raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")


def is_json(myjson):
    try:
        # json.loads(myjson, default=default_serializer)
        json.dumps(myjson, default=default_serializer)
    except ValueError as e:
        return False
    return True

def is_cross_inside(df_sorted, args, valuecutCross=0.75):

    df_sorted['IsCrossInside'] = 0

    df_sorted = df_sorted.reset_index(drop=True)  # I reset the index so that I can loop on inner loop inside

    # this works but it is absolutely too heavy!!! Got: mask1 = (SentenceRef_array[:, None] == SentenceRef_array) & \
    #              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    # numpy.core._exceptions._ArrayMemoryError: Unable to allocate 73.4 TiB for an array with shape (8984940, 8984940) and data type bool
    #
    # # Assuming df_sorted is your DataFrame
    # df_sorted['IsCrossInside'] = 0
    #
    # # Convert necessary columns to numpy arrays
    # SentenceRef_array = df_sorted['SentenceRef'].to_numpy()
    # start_array = df_sorted['start'].to_numpy()
    # end_array = df_sorted['end'].to_numpy()
    # score_array = df_sorted['score'].to_numpy()
    # ToLink_array = df_sorted['ToLink'].to_numpy()
    #
    # # Identify NaN or empty strings in ToLink array
    # toLink_nan_or_empty = pd.isna(ToLink_array) | (ToLink_array == '')
    #
    # # Create the mask for the first set of conditions
    # mask1 = (SentenceRef_array[:, None] == SentenceRef_array) & \
    #         (start_array[:, None] <= start_array) & \
    #         (end_array[:, None] > start_array) & \
    #         (end_array[:, None] <= end_array) & \
    #         (score_array[:, None] < score_array) & \
    #         toLink_nan_or_empty[:, None]
    #
    # # Create the mask for the second set of conditions
    # mask2 = (SentenceRef_array[:, None] == SentenceRef_array) & \
    #         (end_array[:, None] >= end_array) & \
    #         (start_array[:, None] < end_array) & \
    #         (start_array[:, None] >= start_array) & \
    #         (score_array[:, None] < score_array) & \
    #         toLink_nan_or_empty[:, None]
    #
    # # Combine the masks
    # mask = mask1 | mask2
    #
    # # Aggregate the masks and set 'IsCrossInside' where the condition is True
    # df_sorted.loc[mask.any(axis=1), 'IsCrossInside'] = 1


    # df_sorted['IsCrossInside'] = 0
    #
    # #questo for e' altamente inefficiente...guardare per alternative piu' ottimizzate!!!
    # for index, row in df_sorted.iterrows():
    #
    #     print(row)
    #
    #     mask = (df_sorted['SentenceRef'] == row['SentenceRef']) & (df_sorted['start'] <= row['start']) & (df_sorted['end'] > row['start']) & (
    #             df_sorted['end'] <= row['end']) & (df_sorted['score'] < row['score']) & (df_sorted['ToLink'].isnull() | (df_sorted['ToLink'] == ''))
    #     mask |= (df_sorted['SentenceRef'] == row['SentenceRef']) & (df_sorted['end'] >= row['end']) & (df_sorted['start'] < row['end']) & (
    #             df_sorted['start'] >= row['start']) & (df_sorted['score'] < row['score']) & (df_sorted['ToLink'].isnull() | (df_sorted['ToLink'] == ''))
    #
    #     df_sorted.loc[mask, 'IsCrossInside'] = 1

    # Iterate over the DataFrame with an outer loop - I know that df_sorted is ordered by 'SentenceRef' and 'start'
    indexes_list = []
    scores_list = []
    IsToLinkContained = []
    for i, row_outer in tqdm(df_sorted.iterrows()):
        #print(row_outer)

        # if (i>0) and (df_sorted.iloc[i-1]['SentenceRef'] == row_outer['SentenceRef']): # if the previous row is of the same SenteceRef, it has been alredy computed and I skip
        #     continue
        if len(indexes_list)==0:
            scores_list.append(row_outer['score'])
            indexes_list.append(i)
            if (pd.isnull(row_outer['ToLink']==False) and len(row_outer['ToLink'])>0):
                IsToLinkContained.append(True)
            else:
                IsToLinkContained.append(False)
            # if (pd.isnull(row_outer['ToLink']) or row_outer['ToLink'] == ''):
            #     IsToLinkContained.append(False)
            # elif len(row_outer['ToLink'])>0:
            #     IsToLinkContained.append(True)
        else:
            if i in indexes_list:
                if (i == indexes_list[-1]):
                    # indexes_list = []
                    # scores_list = []
                    # IsToLinkContained = []
                    indexes_list = [indexes_list[-1]]
                    scores_list = [scores_list[-1]]
                    IsToLinkContained = [IsToLinkContained[-1]]
                else:
                    continue

        # Inner loop only needs to consider rows starting from the current position
        for j in range(i + 1, len(df_sorted)):
        #for j in range(0, len(df_sorted)):
        #    if i==j: continue

            #print(j)
            row_inner = df_sorted.iloc[j]

            # Break the inner loop if SentenceRef changes (due to sorting)
            if row_inner['SentenceRef'] != row_outer['SentenceRef']:
                break
            elif row_inner['start'] >= row_outer['end']:
                break
            else:
                scores_list.append(row_inner['score'])
                indexes_list.append(j)
                if (pd.isnull(row_inner['ToLink'] == False) and len(row_inner['ToLink']) > 0):
                    IsToLinkContained.append(True)
                else:
                    IsToLinkContained.append(False)

        if len(indexes_list)>1:
            first_true_index = -1
            try:
                first_true_index = IsToLinkContained.index(True)
                #print(f"The first index with value True is: {first_true_index}")
            except ValueError:
                first_true_index = -1
                #print("No True value found in the list")

            topinlist=-1
            if first_true_index >=0:
                topinlist = first_true_index
            else:
                topinlist = scores_list.index(max(scores_list))
                #print(f"The position with the maximum score is: {topinlist}")

            if topinlist >= 0:
                for xx in range(0, len(indexes_list)):
                    if xx == topinlist:
                        continue
                    df_sorted.at[indexes_list[xx], 'IsCrossInside'] = 1

        else:
            indexes_list = []
            scores_list = []
            IsToLinkContained = []

    #Now I want to delete all the words that are contained within another . For example I want to drop "osis" from Legionellosis
    if not df_sorted.empty:

        # punctuation_and_space = set(string.punctuation + ' ')
        # condition = df_sorted.apply(lambda row:
        #                             (row['IsCrossInside'] == 0) or
        #                             ((row['IsCrossInside'] == 1) and
        #                             ((row[args.source_column][row['start'] - 1] in punctuation_and_space) if row[
        #                                                                                        'start'] - 1 >= 0 else True) and
        #                             ((row[args.source_column][row['end']] in punctuation_and_space) if row['end'] <= len(
        #                                 row[args.source_column]) else True)),
        #                             axis=1)

        condition = df_sorted.apply(lambda row:
                                    (row['IsCrossInside'] == 0) or
                                    ( (row['IsCrossInside'] == 1) and (row['score'] >=valuecutCross )),
                                    axis=1)

        # Filter the DataFrame to keep only rows where the condition is False
        df_sorted = df_sorted[condition]

    return df_sorted

def entitiesFusion(df_annotated, args):

    if strtobool(args.debug):
        print("\nStart entities fusion and filtering ...")

    areJson = df_annotated["annotation"].apply(is_json)
    if False in areJson.unique():
        for idxr, rr in df_annotated.iterrows():
            # for idxr in range(df_annotated["annotation"].shape[0]):
            if areJson[idxr] == False:
                print("PROBLEM WITH JSON AT INDEX " + str(idxr) + ":\n" + df_annotated["annotation"][idxr])
                replacement_empty_myjson = '{\"entity_group\": \"\", \"score\": \"\", "word": \"\", \"start\": \"\", \"end\": \"\"}'  # {'entity_group': 'ORG', 'score': 0.9999951, 'word': 'Health Ministry', 'start': 4, 'end': 19}
                df_annotated.at[idxr, "annotation"] = replacement_empty_myjson
                print(" ...... Then replacing it with empty JSON --> " + df_annotated["annotation"][idxr])

    try:

        # df_extract = df_annotated.apply(lambda x: pd.Series(
        #    json.loads(x['annotation'], default=default_serializer).values(),
        #    index=json.loads(x['annotation'], default=default_serializer).keys()), axis=1)
        df_extract = df_annotated.apply(lambda x: pd.Series(x['annotation'].values(),
                                                            index=x['annotation'].keys()), axis=1)

        # Check if '@id' column exists in df_Extract
        if '@id' in df_extract.columns:
            # Drop the '@id' column
            df_extract = df_extract.drop(columns='@id')

        df_annotated = pd.merge(df_annotated, df_extract, left_index=True, right_index=True)

    except Exception as err:
        logging.error(
            f'FAILED to extract json results\n\tError: {err}\nLeaving it as a single column then and not decompressing! Have a check...')

    #


    # Delete all the rows where EXACT MATCHING NOT MET:
    # Apply the conditions
    condition_to_delete = (
            df_annotated[args.source_column].str.startswith('"') &
            df_annotated[args.source_column].str.endswith('"') &
            (df_annotated[args.source_column].apply(strip_quotes).str.lower() != df_annotated['word'].str.lower())
    )

    # Now Filter out the rows where condition_to_delete is True
    df_annotated = df_annotated[~condition_to_delete].copy()
    #

    #delete all the rows with score smaller than entities_filter_threshold:
    if args.entities_filter_threshold > 0:
        # df_annotated = df_annotated[df_annotated['score'] >= args.entities_filter_threshold]
        df_annotated = df_annotated[df_annotated['score'] > args.entities_filter_threshold]
        if df_annotated.empty:
            return df_annotated

    # #delete all the rows where the concept that was asked to link, in the column "ToLink", is present and it is different from the column "word", that was recognised
    # df_annotated = df_annotated[(df_annotated['ToLink'] == df_annotated['word']) | df_annotated['ToLink'].isna()]

    # in all the rows having a value not null for the column "ToLink", compare this value to that of the column "word". If they are different, set the value in "ToLink" to None
    # df_annotated.loc[
    #     (~df_annotated['ToLink'].isnull()) & (df_annotated['ToLink'] != df_annotated['word']), 'ToLink'] = None
    df_annotated.loc[
        (~df_annotated['ToLink'].isnull()) & (
                    df_annotated['ToLink'].str.casefold() != df_annotated['word'].str.casefold()), 'ToLink'] = None

    # now fill all the values of the column "toLink" that are empty with the values of the row "word":
    # df_annotated['ToLink'] = df_annotated['ToLink'].fillna(df_annotated['word'])

    if "IsGeo" not in df_annotated.columns:
        #df_annotated["IsGeo"] = None  # 0
        df_annotated.loc[:, "IsGeo"] = None
    if "IsBio" not in df_annotated.columns:
        #df_annotated["IsBio"] = None  # 0
        df_annotated.loc[:, "IsBio"] = None

    df_annotated.loc[df_annotated['entity_group'] == 'LOCATION', 'entity_group'] = "LOC"
    df_annotated.loc[df_annotated['entity_group'] == 'LOC', 'IsGeo'] = 1

    #df_annotated.loc[df_annotated['entity_group'] == 'DISEASE', 'IsBio'] = 1
    df_annotated.loc[df_annotated['entity_group'].str.lower().str.contains('disease'), 'IsBio'] = 1
    df_annotated.loc[(df_annotated['model'].str.contains('Medical-NER')) & (
                df_annotated['entity_group'].isin(['LOC', 'DATE', 'PER', 'ORG', 'DOSAGE', 'LAB_VALUE', 'DURATION']) == False), 'IsBio'] = 1
    df_annotated.loc[(df_annotated['model'].str.contains('NCBO')) & (
            df_annotated['entity_group'].isin(['CONC']) == False), 'IsBio'] = 1

    # !!! THIS CHECK HAS BEEN PLACED HERE BECAUSE NCBO Bioportal put Start+1 !!! SO I NEED TO DROP A ONE TO DROP DUPLICATES AND MAX SCORES
    df_annotated.loc[df_annotated['model'].str.lower().str.contains('ncbo'), 'start'] -= 1

    # !!! THIS CHECK HAS BEEN PLACED HERE BECAUSE MEDICAL-NER PUT A VALUE OF START WHICH IS THE REAL ONE MINUS ONE, IN THE CASE THAT THE IDENTIFIED ENTITY STARTS WITH A SPACE!!! SO I NEED TO ADD A ONE TO DROP DUPLICATES AND MAX SCORES
    df_annotated.loc[(df_annotated['model'] == 'blaze999/Medical-NER') &
                     df_annotated.apply(lambda row: row[args.source_column][row['start']] == ' ',
                                        axis=1), 'start'] += 1

    # !!! THIS CHECK HAS BEEN PLACED HERE BECAUSE GLINER MODELS PUT A VALUE OF START and of END WHICH IS THE REAL ONE MINUS ONE, IN THE CASE THAT THE IDENTIFIED ENTITY STARTS WITH A SPACE!!! SO I NEED TO ADD A ONE to START and END TO DROP DUPLICATES AND MAX SCORES
    df_annotated.loc[df_annotated['model'].str.lower().str.contains('gliner') &
                     df_annotated.apply(lambda row: row[args.source_column][row['start']] == ' ',
                                        axis=1), 'end'] += 1
    df_annotated.loc[df_annotated['model'].str.lower().str.contains('gliner')  &
                      df_annotated.apply(lambda row: row[args.source_column][row['start']] == ' ',
                                         axis=1), 'start'] += 1


    #### Here I drop all the identified NER words which are strictly contained in other words
        # Apply first the function to the "args.source_column" to create lists of words
    df_annotated['extracted_words'] = df_annotated[args.source_column].apply(extract_words,putInLower=True)
        # Filter the DataFrame
    df_annotated = df_annotated[df_annotated.apply(lambda row: all_words_in_list(row['word'], row['extracted_words'], putInLower=True), axis=1)]
        # drop the 'extracted_words' column afterwards:
    df_annotated = df_annotated.drop(columns=['extracted_words'])
    #####


    # This operation sorts the DataFrame by the "ToLink" column in descending order, with null values at the end, and then uses the drop_duplicates method to drop all duplicate rows,
    # except the first one, based on all columns except "ToLink".
    # This way, it will keep the rows with the non-null value in "ToLink" if there are multiple rows with the same values in all columns except "ToLink".
    df_annotated = df_annotated.sort_values(by='ToLink', ascending=False, na_position='last')

    for col in df_annotated.columns:
        if df_annotated[col].apply(lambda x: isinstance(x, dict)).any():
            if strtobool(args.debug):
                print(
                    f"Column '{col}' contains dictionaries...converting it to strings otherwise it will not work the concat etc..")
            df_annotated[col] = df_annotated[col].apply(lambda x: str(x))

    df_annotated = df_annotated.drop_duplicates(subset=[col for col in df_annotated.columns if
                                                        col != 'ToLink' and col != 'ALLURIScontextFromNCBO' and not df_annotated[col].apply(
                                                            lambda x: isinstance(x, dict)).any()], keep='first')

    # df_annotated = df_annotated.loc[df_annotated.groupby(['SentenceRef', 'ToLink', args.source_column, 'end', 'start', df_annotated['word'].str.lower()])['score'].idxmax()]
    # df_annotated = df_annotated.loc[df_annotated.groupby(['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower()])['score'].idxmax()]

    df_annotated_Geo = df_annotated.loc[df_annotated.groupby(
        ['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower(), 'IsGeo'])[
        'score'].idxmax()]
    df_annotated_Bio = df_annotated.loc[df_annotated.groupby(
        ['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower(), 'IsBio'])[
        'score'].idxmax()]
    df_annotated_all = df_annotated.loc[
        df_annotated.groupby(['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower()])[
            'score'].idxmax()]

    # now you can concat
    df_annotated_combined = pd.concat([df_annotated_Geo, df_annotated_Bio, df_annotated_all])
    df_annotated_combined = df_annotated_combined.drop_duplicates(subset=[col for col in df_annotated_combined.columns if
                                                        col != 'ToLink' and col != 'ALLURIScontextFromNCBO' and not df_annotated_combined[col].apply(
                                                            lambda x: isinstance(x, dict)).any()], keep='first')

    # df_annotated_combined['IsBioGeo'] = df_annotated_combined['IsGeo'].fillna(0) + df_annotated_combined['IsBio'].fillna(0)
    # df_annotated_combined['IsBioGeo'] = pd.to_numeric(df_annotated_combined['IsGeo'], errors='coerce').fillna(0) + pd.to_numeric(df_annotated_combined['IsBio'], errors='coerce').fillna(0)
    # df_annotated_combined['IsBioGeo'] = df_annotated_combined['IsGeo'].infer_objects(copy=False).fillna(0) + df_annotated_combined['IsBio'].infer_objects(copy=False).fillna(0)
    df_annotated_combined.loc[:, "IsBioGeo"] = df_annotated_combined.loc[:, 'IsGeo'].infer_objects(copy=False).fillna(0) + df_annotated_combined.loc[:, 'IsBio'].infer_objects(copy=False).fillna(0)

    df_annotated_combined = df_annotated_combined.loc[df_annotated_combined.groupby(
        ['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower()])['IsBioGeo'].idxmax()]

    df_annotated_combined = df_annotated_combined.loc[
        df_annotated_combined.groupby(
            ['SentenceRef', args.source_column, 'end', 'start', df_annotated['word'].str.lower(), 'IsBioGeo'])[
            'score'].idxmax()]

    df_annotated_combined = df_annotated_combined.drop('IsBioGeo', axis=1)
    df_annotated_combined.loc[df_annotated_combined['IsBio'] == 0, 'IsBio'] = None
    df_annotated_combined.loc[df_annotated_combined['IsGeo'] == 0, 'IsGeo'] = None

    df_annotated_combined = df_annotated_combined.sort_values(by=['SentenceRef', 'start', 'ToLink', 'word', 'score'], ascending=[True, True, True, True, False])
    #df_annotated_combined = df_annotated_combined.reindex(range(len(df_annotated_combined)))

    return df_annotated_combined


def geonames_api_call(word, args, key_geonames, cache_map_geonames):
    context = ""
    singleContext = None
    globalContext = None
    singleTriples = None
    globalTriples = None

    if cache_map_geonames is not None:
        if word in cache_map_geonames:
            if context in cache_map_geonames[word]:
                url_text = cache_map_geonames[word][context]
                if strtobool(args.debug):
                    print("RETRIEVED CACHED RESULT FOR:\n", word, " => ", url_text, "\n")
                return url_text, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames

    # url = f"http://api.geonames.org/search?name_equals={word}&maxRows=1&featureClass=A&featureCode=ADM1&featureCode=ADM2&featureCode=ADM3&featureCode=ADM4&featureCode=ADM5&type=json&username={key_geonames}"
    url = f"http://api.geonames.org/search?name_equals={word}&maxRows=1&type=json&username={key_geonames}"
    response = requests.get(url)

    try:
        data = response.json()
        if data['geonames']:
            # geoname = data['geonames'][0]['name']
            geonameId = data['geonames'][0]['geonameId']
            geonameUrl = "https://sws.geonames.org/" + str(geonameId) + "/"

            if cache_map_geonames is not None:
                if not word in cache_map_geonames:
                    cache_map_geonames[word] = {}
                cache_map_geonames[word][context] = geonameUrl

            return geonameUrl, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames
        else:

            if cache_map_geonames is not None:
                if not word in cache_map_geonames:
                    cache_map_geonames[word] = {}
                cache_map_geonames[word][context] = None

            return None, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames

    except Exception as err:

        # if cache_map_geonames is not None:
        #     if not word in cache_map_geonames:
        #         cache_map_geonames[word] = {}
        #     cache_map_geonames[word][context] = None

        return None, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames


def getUrlBioAndAllOtherBioConcepts(word, args, key_virtuoso, cache_map_virtuoso, endpoint, VirtuosoUsername, contextWordVirtuoso, UseBioportalForLinking=False, questionText="" ):
    #UseBioportalForLinking = False #trial to del

    if strtobool(args.debug):
        print("--- start getUrlBioAndAllOtherBioConcepts for " + word.lower())

    entityBioeUrl = None
    ALLURIScontext = []

    #key_bioportal = ""
    #if args.bioportalkey_filename:
    #    fkeyname = args.bioportalkey_filename
    #    with open(fkeyname) as f:
    #        key_bioportal = f.read()
    key_bioportal = os.environ['key_bioportal']

    # Check if args.KG_restriction exists and is not empty
    if getattr(args, 'KG_restriction', None):

        # api call
        if strtobool(args.debug):
            print("--- " + word.lower())

        # args.KG_restriction exists and is not empty
        if strtobool(args.debug):
            print("KG_restriction is provided and not empty:", args.KG_restriction)

        from_clauses = ' '.join([f"FROM <{choice}>" for choice in args.KG_restriction])

        # Construct the full SPARQL query
        query = f"""
                                prefix skosxl: <http://www.w3.org/2008/05/skos-xl#> 
                                SELECT ?concept ?label (COUNT(?edge) AS ?score)
                                {from_clauses}
                                WHERE {{
                                  ?concept skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?label .
                                  FILTER (LCASE(STR(?label)) = "{word.lower()}")
                                  ?concept ?edge ?o .
                                }}
                                GROUP BY ?concept ?label
                                ORDER BY DESC(?score)
                            """

        ### this is for Bioportal url api:
        onto_clauses = ""
        # for choice in args.KG_restriction:
        #     if choice == "SNOMEDCT":
        #         choice = "SNOMED"
        #     elif choice == "OBOREL":
        #         choice = "RO"
        #     elif choice == "PTRANS":
        #         choice = "TRANS"
        #     elif choice == "FOODON":
        #         choice = "FoodOn"
        #     elif choice == "GEOSPARQL":
        #         choice = "GeoSPARQL"
        #     elif choice == "NCBITAXON":
        #         choice = "NCBITAXON,NCBITaxon_"
        #     onto_clauses = onto_clauses + choice + ","
        for choice in args.KG_restriction:
            if choice == "SNOMED":
                choice="SNOMEDCT"
            elif choice == "RO":
                choice = "OBOREL"
            elif choice == "TRANS":
                choice = "PTRANS"
            elif choice == "FoodOn":
                choice = "FOODON"
            elif choice == "GeoSPARQL":
                choice = "GEOSPARQL"
            # elif choice == "NCBITAXON":
            #     choice = "NCBITAXON,NCBITaxon_"
            elif choice == "NCBITaxon_":
                choice = "NCBITAXON"
            if choice in ONLY_Ontologies_OnBIOPORTAL:
                onto_clauses=onto_clauses+choice+","

        if onto_clauses and onto_clauses[-1] == ",":
            onto_clauses = onto_clauses[:-1]

        url = f"https://services.data.bioontology.org/annotatorplus/?text={word.lower()}&ontologies={onto_clauses}&longest_only=true&exclude_numbers=true&whole_word_only=true&exclude_synonyms=false&negation=false&experiencer=false&temporality=false&score_threshold=0&confidence_threshold=0&display_links=false&display_context=false&score=cvalue&apikey={key_bioportal}"

    else:
        # args.KG_restriction does not exist or is empty
        if strtobool(args.debug):
            print("--- " + word.lower())
            print("KG_restriction is not provided or empty - Consider all the KGs in the virtuoso endpoint")

        query = f"""
                    prefix skosxl: <http://www.w3.org/2008/05/skos-xl#> 
                    SELECT ?concept ?label (COUNT(?edge) AS ?score)
                    WHERE {{
                      ?concept skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?label .
                      FILTER (LCASE(STR(?label)) = "{word.lower()}")
                      ?concept ?edge ?o .
                    }}
                    GROUP BY ?concept ?label
                    ORDER BY DESC(?score)
                """

        ### this is for Bioportal url api:
        url = f"https://services.data.bioontology.org/annotatorplus/?text={word.lower()}&ontologies=AEO,BFO,BIM,BCGO,CL,CHIRO,CHEBI,DCM,FMA,GO,GENO,GEOSPARQL,HL7,DOID,HP,HP_O,IDO,IAO,ICD10,LOINC,MESH,MONDO,NCIT,NCBITAXON,NIFCELL,NIFSTD,GML,OBCS,OCHV,OHPI,OPB,PTRANS,PLOSTHES,RADLEX,OBOREL,STY,SO,SNOMEDCT,STATO,SYMP,FOODON,UBERON,VO&longest_only=true&exclude_numbers=true&whole_word_only=true&exclude_synonyms=false&negation=false&experiencer=false&temporality=false&score_threshold=0&confidence_threshold=0&display_links=false&display_context=false&score=cvalue&apikey={key_bioportal}"

    try:

        if UseBioportalForLinking == False:

            if strtobool(args.debug):
                print("Use Virtuoso Sparql endpoint for linking ... " + word.lower())

            responseText = sparqlQuery(endpoint, questionText, VirtuosoUsername, key_virtuoso, strtobool(args.USE_CACHE))

            # Parse the response as JSON
            results = json.loads(responseText)

            if len(results) > 0 and results['results']['bindings']:

                entityBioeUrl = str(results['results']['bindings'][0]['concept']['value'])

                if cache_map_virtuoso is not None:
                    if not word in cache_map_virtuoso:
                        cache_map_virtuoso[word] = {}
                    cache_map_virtuoso[word][contextWordVirtuoso] = entityBioeUrl

                # # loop the results
                for result in results['results']['bindings']:
                    # print(result)

                    contextConcept = result['concept']['value']
                    if contextConcept not in ALLURIScontext:
                        ALLURIScontext.append(contextConcept)
                        if cache_map_virtuoso is not None:
                            if not word in cache_map_virtuoso:
                                cache_map_virtuoso[word] = {}
                            cache_map_virtuoso[word][contextConcept] = None

                if ALLURIScontext and isinstance(ALLURIScontext, list):
                    ALLURIScontext = list(set(ALLURIScontext))

                if cache_map_virtuoso is not None:
                    if not word in cache_map_virtuoso:
                        cache_map_virtuoso[word] = {}
                    cache_map_virtuoso[word]['ALLURIScontext'] = ALLURIScontext

            else:

                if cache_map_virtuoso is not None:
                    if not word in cache_map_virtuoso:
                        cache_map_virtuoso[word] = {}
                    cache_map_virtuoso[word][contextWordVirtuoso] = None
                    cache_map_virtuoso[word]['ALLURIScontext'] = []

        else: #this is instead using Bioportal API for linking

            if strtobool(args.debug):
                print("Use Bioportal for linking ... " + word.lower())

            response = requests.get(url)

            try:
                data = response.json()

                if not data:
                    # nothing found from Bioportal
                    return None, None, None, None, None, cache_map_virtuoso

                dff = pd.DataFrame(data)
                dff = dff.drop(columns=['hierarchy', 'mappings'])

                # If the columns are dictionary-like, use pd.json_normalize:
                expanded_annotated_class = pd.json_normalize(dff['annotatedClass'])

                expanded_annotations = pd.DataFrame(dff['annotations'].tolist(), index=dff.index)
                expanded_annotations = pd.json_normalize(expanded_annotations[0])

                # Join the expanded columns back to the original DataFrame
                df_expanded = dff.drop(columns=['annotatedClass', 'annotations']).join(expanded_annotated_class).join(
                    expanded_annotations)

                # Snomed id replacement because in our internal knolwedgebase we have this base uri
                df_expanded['@id'] = df_expanded['@id'].str.replace(
                    "http://purl.bioontology.org/ontology/SNOMEDCT/",
                    "http://snomed.info/id/"
                )

                if not df_expanded.empty:

                    df_expanded = df_expanded.sort_values(
                        by=['from', 'text', 'score', 'matchType'], ascending=[True, True, False, False])

                    df_expanded = df_expanded.drop_duplicates(subset=['@id'])

                    # Filter rows where 'prefLabel' is exactly equal to 'word.lower()' or 'word.lower()' is in 'synonym'
                    # filtered_df = df_expanded[
                    #     df_expanded['prefLabel'].str.lower() == word.lower() |
                    #     df_expanded['synonym'].apply(
                    #         lambda x: True if isinstance(x, list) and len(x) > 0 and word.lower() in [item.lower() for
                    #                                                                                   item in x] else (
                    #             np.nan if x is None or (isinstance(x, float) and pd.isna(x)) else x))
                    #     ]

                    df_expanded = df_expanded[
                        df_expanded['prefLabel'].apply(
                            lambda x: isinstance(x, str) and x.lower() == word.lower()
                        ) |
                        df_expanded['synonym'].apply(
                            lambda x: isinstance(x, list) and any(item.lower() == word.lower() for item in x)
                        )
                        ]

                    if df_expanded.empty:
                        # nothing found from Bioportal
                        return None, None, None, None, None, cache_map_virtuoso

                    # Specify the columns you want to keep
                    columns_to_keep = ["score", "from", "to", "prefLabel", "text", "@id"]

                    # Subset the dataframe to keep only the specified columns
                    df_expanded = df_expanded[columns_to_keep]

                    # Rename the specified columns
                    df_expanded = df_expanded.rename(
                        columns={"from": "start", "to": "end", "text": "word"})

                    # Optional: Reset index if you want a clean index after filtering
                    df_expanded = df_expanded.reset_index(drop=True)

                    df_expanded['score'] = df_expanded['score'].round(2)

                    # Find the index of the row with the maximum 'score'
                    max_score_index = df_expanded['score'].idxmax()

                    max_score_row = df_expanded.loc[df_expanded['score'].idxmax()]

                    entityBioeUrl = str(max_score_row['@id'])

                    if cache_map_virtuoso is not None:
                        if not word in cache_map_virtuoso:
                            cache_map_virtuoso[word] = {}
                        cache_map_virtuoso[word][contextWordVirtuoso] = entityBioeUrl

                    # Drop the row with the maximum 'score'
                    #df_expanded = df_expanded.drop(max_score_index)

                    # Reset the index if desired (optional)
                    df_expanded.reset_index(drop=True, inplace=True)

                    # Iterate over each row in the DataFrame
                    for index, row in df_expanded.iterrows():
                        # Append the '@id' value to the list
                        if row['@id'] is not None and pd.notna(row['@id']):
                            contextConcept=row['@id']
                            ALLURIScontext.append(contextConcept)
                            if cache_map_virtuoso is not None:
                                if not word in cache_map_virtuoso:
                                    cache_map_virtuoso[word] = {}
                                cache_map_virtuoso[word][contextConcept] = None

                    if ALLURIScontext and isinstance(ALLURIScontext, list):
                        ALLURIScontext = list(set(ALLURIScontext))

                    if cache_map_virtuoso is not None:
                        if not word in cache_map_virtuoso:
                            cache_map_virtuoso[word] = {}
                        cache_map_virtuoso[word]['ALLURIScontext'] = ALLURIScontext


                    return entityBioeUrl, ALLURIScontext, cache_map_virtuoso

                else:
                    #nothing found from Bioportal
                    return None, None, None, None, None, cache_map_virtuoso


            except Exception as err:
                logging.error(
                    f'ERROR ON BioPortal Annotator API Call\n\tError: {err}\n TextToAnnotate: {word.lower()}\n Have a check...')
                return None, None, None, None, None, cache_map_virtuoso

    except Exception as err:

        # if cache_map_virtuoso is not None:
        #     if not word in cache_map_virtuoso:
        #         cache_map_virtuoso[word] = {}
        #     cache_map_virtuoso[word][contextWordVirtuoso] = None

        return None, None, None, None, None, cache_map_virtuoso


    return entityBioeUrl, ALLURIScontext, cache_map_virtuoso




def getLinearTextualContextFromTriples(word,labelTriplesLIST, text_splitter, args, map_query_input_output, cleanInput=True, questionText=""):

    # trial
    #return None, map_query_input_output

    word = word.lower()
    word = word.capitalize()


    if (strtobool(args.UseRetrieverForContextCreation)==True):
        labelTriples = ""
        passages = []
        nn = 200

        if len(labelTriplesLIST)<=nn:
            passages = []
            for i, triple in enumerate(labelTriplesLIST, start=1):
                # for triple in labelTriplesLIST:
                TriplesString = (" ".join(str(element).capitalize() for element in triple))
                passages.append(TriplesString)

            df_retrieved = RAG_retrieval_TopK(questionText, passages, top_fraction=0.1, max_num_passages=20,
                                                  min_threshold=0.7)

            if not df_retrieved.empty:
                #labelTriplesLIST_RAGGED = df_retrieved.to_records(index=False).tolist()
                labelTriplesLIST_RAGGED = df_retrieved['Passage'].apply(lambda x: (x,)).tolist()
                labelTriplesAPP = ". ".join(
                    " ".join(str(element).capitalize() for element in triple) for triple in labelTriplesLIST_RAGGED)

                if not labelTriples:
                    labelTriples = labelTriplesAPP
                else:
                    labelTriples = labelTriples + ". " + labelTriplesAPP

        else:

            OverallListRAGtriples = labelTriplesLIST.copy()

            while len(OverallListRAGtriples)>nn:
                Oinnerlistiterative=[]
                for i, triple in enumerate(OverallListRAGtriples, start=1):
                    # for triple in labelTriplesLIST:
                    TriplesString = (" ".join(str(element).capitalize() for element in triple))
                    passages.append(TriplesString)
                    # Check if the current index is a multiple of nn
                    if i % nn == 0:
                        # print("elaborate RAG triples")

                        # df_retrieved_Base = RAG_retrieval_Base(questionText, passages, min_threshold=0.7, max_num_passages=20)
                        # df_retrievedZscore = RAG_retrieval_Z_scores(questionText, passages, z_threshold=1.0,  max_num_passages=20, min_threshold=0.7)
                        # df_retrievedPercentile = RAG_retrieval_Percentile(questionText, passages, percentile=90,  max_num_passages=20, min_threshold=0.7)
                        df_retrievedtopk = RAG_retrieval_TopK(questionText, passages, top_fraction=0.1, max_num_passages=20,
                                                              min_threshold=0.7)

                        passages = []

                        df_retrieved = df_retrievedtopk.copy()
                        if not df_retrieved.empty:
                            #labelTriplesLIST_RAGGED = df_retrieved.to_records(index=False).tolist()
                            labelTriplesLIST_RAGGED = df_retrieved['Passage'].apply(lambda x: (x,)).tolist()
                            if not Oinnerlistiterative:
                                Oinnerlistiterative=labelTriplesLIST_RAGGED
                            else:
                                Oinnerlistiterative.extend(labelTriplesLIST_RAGGED)

                if passages:
                    df_retrievedtopk = RAG_retrieval_TopK(questionText, passages, top_fraction=0.1, max_num_passages=20,
                                                          min_threshold=0.7)

                    df_retrieved = df_retrievedtopk.copy()
                    if not df_retrieved.empty:
                        #labelTriplesLIST_RAGGED = df_retrieved.to_records(index=False).tolist()
                        labelTriplesLIST_RAGGED = df_retrieved['Passage'].apply(lambda x: (x,)).tolist()
                        if not Oinnerlistiterative:
                            Oinnerlistiterative = labelTriplesLIST_RAGGED
                        else:
                            Oinnerlistiterative.extend(labelTriplesLIST_RAGGED)

                OverallListRAGtriples = Oinnerlistiterative.copy()

            if OverallListRAGtriples:
                labelTriplesAPP = ". ".join(" ".join(str(element).capitalize() for element in triple) for triple in OverallListRAGtriples)

                if not labelTriples:
                    labelTriples = labelTriplesAPP
                else:
                    labelTriples = labelTriples + ". " + labelTriplesAPP

                labelTriples = labelTriples.strip().replace("..", ".").strip()



        # labelTriples = ""
        # passages = []
        # nn=200
        # for i, triple in enumerate(labelTriplesLIST, start=1):
        # #for triple in labelTriplesLIST:
        #     TriplesString = (" ".join(str(element).capitalize() for element in triple))
        #     passages.append(TriplesString)
        #     # Check if the current index is a multiple of nn
        #     if i % nn == 0:
        #         #print("elaborate RAG triples")
        #
        #         #df_retrieved_Base = RAG_retrieval_Base(questionText, passages, min_threshold=0.7, max_num_passages=20)
        #         #df_retrievedZscore = RAG_retrieval_Z_scores(questionText, passages, z_threshold=1.0,  max_num_passages=20, min_threshold=0.7)
        #         #df_retrievedPercentile = RAG_retrieval_Percentile(questionText, passages, percentile=90,  max_num_passages=20, min_threshold=0.7)
        #         df_retrievedtopk = RAG_retrieval_TopK(questionText, passages, top_fraction=0.1, max_num_passages=20, min_threshold=0.7)
        #
        #         passages = []
        #
        #         df_retrieved = df_retrievedtopk.copy()
        #         if not df_retrieved.empty:
        #             #labelTriplesLIST_RAGGED = df_retrieved.to_records(index=False).tolist()
        #             labelTriplesLIST_RAGGED = df_retrieved['Passage'].apply(lambda x: (x,)).tolist()
        #             labelTriplesAPP = ". ".join(" ".join(str(element).capitalize() for element in triple) for triple in labelTriplesLIST_RAGGED)
        #
        #             if not labelTriples:
        #                 labelTriples =labelTriplesAPP
        #             else:
        #                 labelTriples = labelTriples + ". " + labelTriplesAPP
        #
        # if passages:
        #     df_retrievedtopk = RAG_retrieval_TopK(questionText, passages, top_fraction=0.1, max_num_passages=20, min_threshold=0.7)
        #
        #     df_retrieved = df_retrievedtopk.copy()
        #     if not df_retrieved.empty:
        #         #labelTriplesLIST_RAGGED = df_retrieved.to_records(index=False).tolist()
        #           labelTriplesLIST_RAGGED = df_retrieved['Passage'].apply(lambda x: (x,)).tolist()
        #         labelTriplesAPP = ". ".join(" ".join(str(element).capitalize() for element in triple) for triple in labelTriplesLIST_RAGGED)
        #         if not labelTriples:
        #             labelTriples = labelTriplesAPP
        #         else:
        #             labelTriples = labelTriples + ". " + labelTriplesAPP
        #
        # if labelTriples:
        #     labelTriples.strip().replace("..",".").strip()


    else:  # NO RAG on triples
        labelTriples = ". ".join(" ".join(str(element).capitalize() for element in triple) for triple in labelTriplesLIST)


    if not(labelTriples) or labelTriples.strip=="":
        logging.warning("getLinearTextualContextFromTriples - No text or prompt supplied! No relevant contextual triples retrieved...Skypping it! Word: "+str(word))
        return "", map_query_input_output

    if token_counter(labelTriples, args.model_name) > args.tokens_max:  # THE CONTEXT IS TOO BIG, BIGGER THAN tokens_max, I need to split
        texts = text_splitter.create_documents([labelTriples])
        labelTriples = texts[0].page_content
        if not (labelTriples) or labelTriples.strip == "":
            logging.warning("after splitting ...No text or prompt supplied! Skypping it! Word: "+str(word))
            return "", map_query_input_output


    contextText = ""

    if (strtobool(args.UseRetrieverForContextCreation) == True):

        contextText = labelTriples

    else:  #USE the LLM for summarise the triples

        # Can you elaborate and express better the following notes, delimited by triple backticks, about "{word}"?
        # Don't add explanations for your answer. Do not invent. Don't use a structure or indenting. Be concise. Don't discard relevant information.
        # made of RDF-like statements,

        # myPromt = f"""
        # Can you elaborate and express better the given notes below, delimited by triple backticks, about "{word}"?
        # Don't add explanations for your answer.
        # Do not invent.
        # Don't use a structure or indenting.
        # Be concise but exhaustive. Don't discard information reported in the notes.
        # """
        myPromt = f"""
        Can you reformulate the following notes, provided between triple backticks, into clear and complete sentences about "{word}"? 
        Ensure the rewriting is human-readable and easily interpretable. Maintain conciseness and exhaustiveness, including all information from the notes. 
        Avoid using note formats or lists, and refrain from inventing additional information.
        """
        myDelimiter = "```"

        if cleanInput==True:
            labelTriples = cleanInputText(labelTriples)

        # try to read cache

        if map_query_input_output is not None:
            key = args.model_name + "__" + str(args.temperature) + "__" + myPromt

            if key in map_query_input_output:
                if labelTriples in map_query_input_output[key]:
                    output = map_query_input_output[key][labelTriples]
                    # if input_text.strip() == "":
                    #     print("here")

                    # if handler == api_call_dglc:
                    #     output = clean_gpt_out(output) #clean output

                    if strtobool(args.debug):
                        print("RETRIEVED CACHED RESULT FOR:\n", myPromt, "\n", myDelimiter, word, myDelimiter, "\n=>\n", output, "\n")

                    return output, map_query_input_output

        #  call

        try:

            contextText = ""
            if args.service_provider == "gptjrc":
                contextText = call_model(input_text=labelTriples, prompt=myPromt, model=args.model_name,
                                  temperature=args.temperature, delimiter=myDelimiter,
                                  InContextExamples=[],
                                  handler=api_call_gptjrc,
                                  verbose=True, args=args)
            elif args.service_provider == "HFonPremises":
                contextText = call_model(input_text=labelTriples, prompt=myPromt, model=args.model_name,
                                         temperature=args.temperature, delimiter=myDelimiter,
                                         InContextExamples=[],
                                         handler=api_call_HFonPremises,
                                         verbose=True, args=args)



            if contextText:
                if not isinstance(contextText, str):
                    contextText = contextText['choices'][0]['message']['content']

            if map_query_input_output is not None:
                if not key in map_query_input_output:
                    map_query_input_output[key] = {}

                if contextText:
                    if contextText != "":
                        map_query_input_output[key][labelTriples] = contextText


        except Exception as err:
            return None, map_query_input_output



    return contextText, map_query_input_output



#@mem.cache
def virtuoso_api_call(word, text_splitter, args, key_virtuoso, cache_map_virtuoso, load_map_query_input_output, id=None, iALLURIScontextFromNCBO=None,UseBioportalForLinking=True,questionText=""):

    if strtobool(args.debug):
        print(f"\n----- Starting virtuoso_api_call for {word}")

    word = word.lower()
    word = strip_quotes(word)

    endpoint = 'https://api-vast.jrc.service.ec.europa.eu/sparql'
    VirtuosoUsername = 'dba'

    if getattr(args, 'KG_restriction', None):
        contextWordVirtuoso = ', '.join(sorted(args.KG_restriction))
    else:
        contextWordVirtuoso = ""

    singleContext = None
    globalContext = None
    sssingleTriples = None
    ggglobalTriples = None
    unique_listLabelTriples = []
    unique_listGlobalTriples  = []

    ALLURIScontext = []

    url_text = None
    if id:
        url_text = id

    if iALLURIScontextFromNCBO and isinstance(iALLURIScontextFromNCBO, list):
        ALLURIScontext=iALLURIScontextFromNCBO
        ALLURIScontext = list(set(ALLURIScontext))

    if (cache_map_virtuoso is not None) and (not url_text):
        if word in cache_map_virtuoso:
            if contextWordVirtuoso in cache_map_virtuoso[word]:
                url_text = cache_map_virtuoso[word][contextWordVirtuoso]
                if strtobool(args.debug):
                    print("RETRIEVED CACHED RESULT FOR:\n", word, " => ", url_text, "\n")
                if not url_text:
                    return None, None, None, None, None, None, cache_map_virtuoso, load_map_query_input_output

    if url_text and not ALLURIScontext:
        if cache_map_virtuoso is not None:
            if word in cache_map_virtuoso:
                if 'ALLURIScontext' in cache_map_virtuoso[word]:
                    ALLURIScontext = cache_map_virtuoso[word]['ALLURIScontext']

    entityBioeUrl = None
    if url_text and ALLURIScontext:
        entityBioeUrl = url_text

    else:

        try:
            entityBioeUrl, ALLURIScontext, cache_map_virtuoso =  getUrlBioAndAllOtherBioConcepts(word, args, key_virtuoso, cache_map_virtuoso, endpoint, VirtuosoUsername, contextWordVirtuoso, UseBioportalForLinking=UseBioportalForLinking, questionText=questionText )
            if ALLURIScontext and isinstance(ALLURIScontext, list):
                ALLURIScontext = list(set(ALLURIScontext))
        except Exception as err:

            # if cache_map_virtuoso is not None:
            #     if not word in cache_map_virtuoso:
            #         cache_map_virtuoso[word] = {}
            #     cache_map_virtuoso[word][contextWordVirtuoso] = None

            return None, None, None, None, None, None, cache_map_virtuoso, load_map_query_input_output



    if entityBioeUrl:

        if strtobool(args.computeEntityContext):

            if strtobool(args.debug):
                print("START computeEntityContext")

            unique_listLabelTriples = []
            singleContext = None

            if cache_map_virtuoso is not None:
                if entityBioeUrl in cache_map_virtuoso:
                    if "LabelTriples" in cache_map_virtuoso[entityBioeUrl]:
                        unique_listLabelTriples = cache_map_virtuoso[entityBioeUrl]["LabelTriples"]
                        if strtobool(args.debug):
                            print("RETRIEVED CACHED RESULT FOR:\n", entityBioeUrl, " => ", "LabelTriples", "\n")
                    if ("SingleContext" in cache_map_virtuoso[entityBioeUrl]) and (strtobool(args.UseRetrieverForContextCreation)==False):
                        singleContext = cache_map_virtuoso[entityBioeUrl]["SingleContext"]
                        if strtobool(args.debug):
                            print("RETRIEVED CACHED RESULT FOR:\n", entityBioeUrl, " => ", "SingleContext", "\n")


            if not singleContext:
                if unique_listLabelTriples:
                    singleContext, load_map_query_input_output = getLinearTextualContextFromTriples(word, unique_listLabelTriples,
                                                                                                    text_splitter, args,
                                                                                                    load_map_query_input_output,cleanInput=True,questionText=questionText)
                else:

                    query = f"""
                    prefix skosxl: <http://www.w3.org/2008/05/skos-xl#> 
                    SELECT DISTINCT ?labelS ?labelP ?labelO
                    WHERE {{
                      {{
                        <{entityBioeUrl}> ?p ?o.
                        <{entityBioeUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS .
                        ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP .
                        ?o skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelO .
                      }}
                      UNION
                      {{
                        SELECT ?labelS ?labelP ?labelO
                        WHERE {{
                          <{entityBioeUrl}> ?p ?labelO .
                          <{entityBioeUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS .
                            ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP .
                            FILTER (isLiteral(?labelO))
                        }}
                      }}
                      UNION
                      {{
                        SELECT DISTINCT ?labelS ?labelP  ?labelO
                        WHERE {{   
                            <{entityBioeUrl}> ?ppp ?ooo .
                            ?ooo rdf:type owl:Restriction .
                            ?ooo owl:onProperty ?p .
                            ?ooo owl:someValuesFrom ?o .
                        <{entityBioeUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS . 
                         ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP . 
                         ?o skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelO . 
                        }}
                      }}
                    }}
                    """

                    try:
                        responseText = sparqlQuery(endpoint, query, VirtuosoUsername, key_virtuoso, strtobool(args.USE_CACHE))

                        # Parse the response as JSON
                        results = json.loads(responseText)

                        if len(results) > 0 and results['results']['bindings']:

                            # word = "subClassOf"
                            # split_word = split_camel_case(word)

                            # # loop the results
                            labelTriples=""
                            listLabelTriples = []
                            pattern = r'\^\^<http:.*?>'
                            for result in results['results']['bindings']:
                                 #print(result)

                                 ss = str(result['labelS']['value']).strip().replace("..",".").replace("@en","")
                                 ss = re.sub(pattern, '', ss)
                                 pp = split_camel_case(str(result['labelP']['value'])).replace("_"," ").strip().replace("..",".").replace("@en","")
                                 pp = re.sub(pattern, '', pp)
                                 oo = str(result['labelO']['value']).replace("_"," ").strip().replace("..",".").replace("@en","")
                                 oo = re.sub(pattern, '', oo)
                                 listLabelTriples.append([ss, pp, oo])

                            # Remove duplicates while preserving order
                            unique_listLabelTriples = list(dict.fromkeys(tuple(triple) for triple in listLabelTriples))

                            # # If you need the result back in list of lists format
                            # unique_listLabelTriples = [list(triple) for triple in unique_listLabelTriples]

                            if unique_listLabelTriples:
                                if cache_map_virtuoso is not None:
                                    if not entityBioeUrl in cache_map_virtuoso:
                                        cache_map_virtuoso[entityBioeUrl] = {}
                                    cache_map_virtuoso[entityBioeUrl]["LabelTriples"] = unique_listLabelTriples

                                singleContext, load_map_query_input_output = getLinearTextualContextFromTriples(word, unique_listLabelTriples, text_splitter, args, load_map_query_input_output,cleanInput=True,questionText=questionText)


                    except Exception as err:
                        singleContext = None

                if singleContext and (strtobool(args.UseRetrieverForContextCreation)==False):
                    if cache_map_virtuoso is not None:
                        if not entityBioeUrl in cache_map_virtuoso:
                            cache_map_virtuoso[entityBioeUrl] = {}
                        cache_map_virtuoso[entityBioeUrl]["SingleContext"] = singleContext


        if strtobool(args.computeEntityGlobalContext):

            if strtobool(args.debug):
                print("START computeEntityGlobalContext")

            unique_listGlobalTriples = []
            globalContext = None

            if cache_map_virtuoso is not None:
                if word in cache_map_virtuoso:
                    if ("GlobalTriples"+" "+contextWordVirtuoso).strip() in cache_map_virtuoso[word]:
                        unique_listGlobalTriples = cache_map_virtuoso[word][("GlobalTriples"+" "+contextWordVirtuoso).strip()]
                        if strtobool(args.debug):
                            print("RETRIEVED CACHED RESULT FOR:\n", word, " => ", ("GlobalTriples"+" "+contextWordVirtuoso).strip(), "\n")
                    if (("GlobalContext"+" "+contextWordVirtuoso).strip() in cache_map_virtuoso[word]) and (strtobool(args.UseRetrieverForContextCreation)==False):
                        globalContext = cache_map_virtuoso[word][("GlobalContext"+" "+contextWordVirtuoso).strip()]
                        if strtobool(args.debug):
                            print("RETRIEVED CACHED RESULT FOR:\n", word, " => ", ("GlobalContext"+" "+contextWordVirtuoso).strip(), "\n")


            if not globalContext:
                if unique_listGlobalTriples:
                    globalContext, load_map_query_input_output = getLinearTextualContextFromTriples(word, unique_listGlobalTriples,
                                                                                                    text_splitter, args,
                                                                                                    load_map_query_input_output,cleanInput=True,questionText=questionText)
                else:

                    if not ALLURIScontext:
                        if cache_map_virtuoso is not None:
                            if word in cache_map_virtuoso:
                                ALLURIScontext = list(cache_map_virtuoso[word].keys())
                                ALLURIScontext = [element for element in ALLURIScontext if element and ("GlobalTriples" in element == False) and ("GlobalContext" in element == False) and "http" in element ]

                    if not ALLURIScontext:

                        # THIS CASE SHOULD BE VERY DIFFICULT TO HAPPEN...IT WILL HAPPEN IN CASE IT COMES FROM AN INITIAL BIOPORTAL ANNOTATION; WHICH ALREADY RECOGNISED THE FIRST URL

                        # # Print the error message to stderr
                        # print("THIS CASE SHOULD NEVER HAPPEN!!!! Check what's happening...exiting now...")
                        # # Exit the program with a non-zero status code (commonly used to indicate an error)
                        # sys.exit(1)

                        try:
                            entityBioeUrl, ALLURIScontext, cache_map_virtuoso = getUrlBioAndAllOtherBioConcepts(word,
                                                                                                                args,
                                                                                                                key_virtuoso,
                                                                                                                cache_map_virtuoso,
                                                                                                                endpoint,
                                                                                                                VirtuosoUsername,
                                                                                                                contextWordVirtuoso,
                                                                                                                UseBioportalForLinking=UseBioportalForLinking,
                                                                                                                questionText=questionText)
                            if ALLURIScontext and isinstance(ALLURIScontext, list):
                                ALLURIScontext = list(set(ALLURIScontext))

                        except Exception as err:

                            # if cache_map_virtuoso is not None:
                            #     if not word in cache_map_virtuoso:
                            #         cache_map_virtuoso[word] = {}
                            #     cache_map_virtuoso[word][contextWordVirtuoso] = None

                            return None, None, None, None, None, None, cache_map_virtuoso, load_map_query_input_output


                    if not ALLURIScontext:
                        # Print the error message to stderr
                        print("THIS CASE SHOULD NEVER HAPPEN NOW!!!! Check what's happening...exiting now...")
                        # Exit the program with a non-zero status code (commonly used to indicate an error)
                        sys.exit(1)

                    else:

                        for xxUrl in ALLURIScontext:

                            unique_listLabelTriples = []
                            # singleContext = None

                            if cache_map_virtuoso is not None:
                                if xxUrl in cache_map_virtuoso:
                                    if "LabelTriples" in cache_map_virtuoso[xxUrl]:
                                        unique_listLabelTriples = cache_map_virtuoso[xxUrl]["LabelTriples"]
                                        if strtobool(args.debug):
                                            print("RETRIEVED CACHED RESULT FOR:\n", xxUrl, " => ",
                                                  "LabelTriples", "\n")
                                    # if "SingleContext" in cache_map_virtuoso[xxUrl] and (strtobool(args.UseRetrieverForContextCreation)==False):
                                    #     singleContext = cache_map_virtuoso[xxUrl]["SingleContext"]
                                    #     if strtobool(args.debug):
                                    #         print("RETRIEVED CACHED RESULT FOR:\n", xxUrl, " => ",
                                    #               "SingleContext", "\n")

                            # if not singleContext:
                            #     if unique_listLabelTriples:
                            #         singleContext, load_map_query_input_output = getLinearTextualContextFromTriples(
                            #             word, unique_listLabelTriples,
                            #             text_splitter, args,
                            #             load_map_query_input_output, cleanInput=True, questionText=questionText)
                            #     else:

                            if not unique_listLabelTriples:

                                query = f"""
                                    prefix skosxl: <http://www.w3.org/2008/05/skos-xl#> 
                                    SELECT DISTINCT ?labelS ?labelP ?labelO
                                    WHERE {{
                                      {{
                                        <{xxUrl}> ?p ?o.
                                        <{xxUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS .
                                        ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP .
                                        ?o skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelO .
                                      }}
                                      UNION
                                      {{
                                        SELECT ?labelS ?labelP ?labelO
                                        WHERE {{
                                          <{xxUrl}> ?p ?labelO .
                                          <{xxUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS .
                                            ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP .
                                            FILTER (isLiteral(?labelO))
                                        }}
                                      }}
                                      UNION
                                      {{
                                        SELECT DISTINCT ?labelS ?labelP  ?labelO
                                        WHERE {{   
                                            <{xxUrl}> ?ppp ?ooo .
                                            ?ooo rdf:type owl:Restriction .
                                            ?ooo owl:onProperty ?p .
                                            ?ooo owl:someValuesFrom ?o .
                                        <{xxUrl}> skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelS . 
                                         ?p skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelP . 
                                         ?o skos:prefLabel|rdfs:label|skos:altLabel|skosxl:literalForm|obo:hasRelatedSynonym ?labelO . 
                                        }}
                                      }}
                                    }}
                                    """

                                try:
                                    responseText = sparqlQuery(endpoint, query, VirtuosoUsername, key_virtuoso, strtobool(args.USE_CACHE))

                                    # Parse the response as JSON
                                    results = json.loads(responseText)

                                    if len(results) > 0 and results['results']['bindings']:

                                        # word = "subClassOf"
                                        # split_word = split_camel_case(word)

                                        # # loop the results
                                        labelTriples = ""
                                        listLabelTriples = []
                                        pattern = r'\^\^<http:.*?>'
                                        for result in results['results']['bindings']:
                                            # print(result)

                                            ss = str(result['labelS']['value']).strip().replace("..", ".").replace("@en","")
                                            ss = re.sub(pattern, '', ss)
                                            pp = split_camel_case(str(result['labelP']['value'])).replace("_"," ").strip().replace("..", ".").replace("@en","")
                                            pp = re.sub(pattern, '', pp)
                                            oo = str(result['labelO']['value']).replace("_"," ").strip().replace("..", ".").replace("@en","")
                                            oo = re.sub(pattern, '', oo)
                                            listLabelTriples.append([ss, pp, oo])

                                        # Remove duplicates while preserving order
                                        unique_listLabelTriples = list(
                                            dict.fromkeys(tuple(triple) for triple in listLabelTriples))

                                        # # If you need the result back in list of lists format
                                        # unique_listLabelTriples = [list(triple) for triple in unique_listLabelTriples]

                                        if unique_listLabelTriples:
                                            if cache_map_virtuoso is not None:
                                                if not xxUrl in cache_map_virtuoso:
                                                    cache_map_virtuoso[xxUrl] = {}
                                                cache_map_virtuoso[xxUrl][
                                                    "LabelTriples"] = unique_listLabelTriples

                                            # singleContext, load_map_query_input_output = getLinearTextualContextFromTriples(
                                            #     word, unique_listLabelTriples, text_splitter, args, load_map_query_input_output, cleanInput=True, questionText=questionText)
                                            #
                                            # if singleContext and (strtobool(args.UseRetrieverForContextCreation)==False):
                                            #     if cache_map_virtuoso is not None:
                                            #         if not xxUrl in cache_map_virtuoso:
                                            #             cache_map_virtuoso[xxUrl] = {}
                                            #         cache_map_virtuoso[xxUrl][
                                            #             "SingleContext"] = singleContext

                                except Exception as err:
                                    unique_listLabelTriples = []


                            if unique_listLabelTriples:
                                unique_listGlobalTriples.extend(unique_listLabelTriples)

                                # If I want to speed up, I can break here, but in this case I will not store the triples for the other uris in the cache, which maybe useful in the future
                                # if token_counter(str(unique_listGlobalTriples),args.model_name) > args.tokens_max:
                                #     break # BREAK THE FOR LOOP IF THE GLOBAL CONTEXT IS ALREADY TOO BIG, BIGGER THAN tokens_max


                    if unique_listGlobalTriples:
                        # Remove duplicates while preserving order
                        unique_listGlobalTriples = list(
                            dict.fromkeys(tuple(triple) for triple in unique_listGlobalTriples))

                        if cache_map_virtuoso is not None:
                            if not word in cache_map_virtuoso:
                                cache_map_virtuoso[word] = {}
                            cache_map_virtuoso[word][("GlobalTriples"+" "+contextWordVirtuoso).strip()] = unique_listGlobalTriples

                        globalContext, load_map_query_input_output = getLinearTextualContextFromTriples(word,
                                                                                                        unique_listGlobalTriples,
                                                                                                        text_splitter, args,
                                                                                                        load_map_query_input_output, cleanInput=True, questionText=questionText)

                if globalContext and (strtobool(args.UseRetrieverForContextCreation)==False):
                    if cache_map_virtuoso is not None:
                        if not word in cache_map_virtuoso:
                            cache_map_virtuoso[word] = {}
                        cache_map_virtuoso[word][("GlobalContext"+" "+contextWordVirtuoso).strip()] = globalContext

    if unique_listLabelTriples:
        sssingleTriples = " ,., ".join(
            " ,,, ".join(str(element).capitalize() for element in triple) for triple in unique_listLabelTriples)
        while "\\n" in sssingleTriples:
            sssingleTriples = sssingleTriples.replace("\\n", " ")
            sssingleTriples = sssingleTriples.strip()
        while "\t" in sssingleTriples:
            sssingleTriples = sssingleTriples.replace("\t", " ")
            sssingleTriples = sssingleTriples.strip()

    if unique_listGlobalTriples:
        ggglobalTriples = " ,., ".join(
            " ,,, ".join(str(element).capitalize() for element in triple) for triple in unique_listGlobalTriples)
        while "\\n" in ggglobalTriples:
            ggglobalTriples = ggglobalTriples.replace("\\n", " ")
            ggglobalTriples = ggglobalTriples.strip()
        while "\t" in ggglobalTriples:
            ggglobalTriples = ggglobalTriples.replace("\t", " ")
            ggglobalTriples = ggglobalTriples.strip()

    return entityBioeUrl, ALLURIScontext, singleContext, globalContext, sssingleTriples, ggglobalTriples, cache_map_virtuoso, load_map_query_input_output



def process_row4Linking(row, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output):

    result = ""  #None
    singleContext = ""  #None
    globalContext = ""  #None
    singleTriples = ""  #None
    globalTriples = ""  #None
    ALLURIScontext = []

    try:

        if row.empty:
            return result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames, cache_map_virtuoso, load_map_query_input_output, row.name

        InRagMode=False
        if hasattr(args, 'useBioKgRAG') and (strtobool(args.useBioKgRAG)==True):
            InRagMode = True

        if (InRagMode==False):
            if row['IsGeo'] == 1:

                if strtobool(args.debug):
                    print(f"\n----- IsGeo ... COMPUTING {row['word']} IN THE TEXT:")
                    print(row[args.source_column])

                result, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames = geonames_api_call(row['word'], args, key_geonames, cache_map_geonames)

            elif row['IsBio'] == 1:

                    # Check if '@id' column exists in df_Extract
                    iiid = None
                    # Check if the '@id' exists in the Series
                    if '@id' in row:
                        # Check if the value is not None or NaN
                        if row['@id'] is not None and not pd.isna(row['@id']):
                            # Assign the value to the variable iiid
                            iiid = row['@id']
                    iiiALLURIScontextFromNCBO = None
                    if 'ALLURIScontextFromNCBO' in row:
                        if row['ALLURIScontextFromNCBO'] is not None and isinstance(row['ALLURIScontextFromNCBO'], list): #and not pd.isna(row['ALLURIScontextFromNCBO']):
                            iiiALLURIScontextFromNCBO=row['ALLURIScontextFromNCBO']
                            iiiALLURIScontextFromNCBO = list(set(iiiALLURIScontextFromNCBO))

                    if strtobool(args.debug):
                        print(f"\n----- isBio COMPUTING ... {row['word']} IN THE TEXT:")
                        print(row[args.source_column])
                    result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_virtuoso, load_map_query_input_output = virtuoso_api_call(row['word'], text_splitter, args, key_virtuoso, cache_map_virtuoso, load_map_query_input_output, id=iiid, iALLURIScontextFromNCBO=iiiALLURIScontextFromNCBO, UseBioportalForLinking=True, questionText=row[args.source_column])

            else:
                if row['model'] == "Forced":
                    # Check if '@id' column exists in df_Extract
                    iiid = None
                    # Check if the '@id' exists in the Series
                    if '@id' in row:
                        # Check if the value is not None or NaN
                        if row['@id'] is not None and not pd.isna(row['@id']):
                            # Assign the value to the variable iiid
                            iiid = row['@id']
                    iiiALLURIScontextFromNCBO = None
                    if 'ALLURIScontextFromNCBO' in row:
                        if row['ALLURIScontextFromNCBO'] is not None and isinstance(row['ALLURIScontextFromNCBO'],
                                                                                    list):  # and not pd.isna(row['ALLURIScontextFromNCBO']):
                            iiiALLURIScontextFromNCBO = row['ALLURIScontextFromNCBO']
                            iiiALLURIScontextFromNCBO = list(set(iiiALLURIScontextFromNCBO))

                    if strtobool(args.debug):
                        print(f"\n----- isForced COMPUTING ... {row['word']} IN THE TEXT:")
                        print(row[args.source_column])

                    result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_virtuoso, load_map_query_input_output = virtuoso_api_call(
                        row['word'], text_splitter, args, key_virtuoso, cache_map_virtuoso, load_map_query_input_output,
                        id=iiid, iALLURIScontextFromNCBO=iiiALLURIScontextFromNCBO,UseBioportalForLinking=True,questionText=row[args.source_column])

                    if not result:  #try annotation without bioportal
                        result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_virtuoso, load_map_query_input_output = virtuoso_api_call(
                            row['word'], text_splitter, args, key_virtuoso, cache_map_virtuoso, load_map_query_input_output,
                            id=iiid, iALLURIScontextFromNCBO=iiiALLURIScontextFromNCBO, UseBioportalForLinking=False,questionText=row[args.source_column])

        else:
            if (row['IsBio'] == 1) or ( (pd.isnull(row["IsBio"]) or row["IsBio"] == '' or row['IsBio'] == 0 or row["IsBio"] is None) and (row['entity_group'] == "MISC") ):

                if strtobool(args.debug):
                    print(f"\n----- InRagMode ...COMPUTING ... {row['word']} IN THE TEXT:")
                    print(row[args.source_column])

                    # Check if '@id' column exists in df_Extract
                    iiid = None
                    # Check if the '@id' exists in the Series
                    if '@id' in row:
                        # Check if the value is not None or NaN
                        if row['@id'] is not None and not pd.isna(row['@id']):
                            # Assign the value to the variable iiid
                            iiid = row['@id']
                    iiiALLURIScontextFromNCBO = None
                    if 'ALLURIScontextFromNCBO' in row:
                        if row['ALLURIScontextFromNCBO'] is not None and isinstance(row['ALLURIScontextFromNCBO'], list):
                            iiiALLURIScontextFromNCBO = row['ALLURIScontextFromNCBO']
                            iiiALLURIScontextFromNCBO = list(set(iiiALLURIScontextFromNCBO))

                result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_virtuoso, load_map_query_input_output = virtuoso_api_call(
                    row['word'], text_splitter, args, key_virtuoso, cache_map_virtuoso, load_map_query_input_output, id=iiid, iALLURIScontextFromNCBO=iiiALLURIScontextFromNCBO,UseBioportalForLinking=True,questionText=row[args.source_column])

        return result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames, cache_map_virtuoso, load_map_query_input_output, row.name

    except Exception as e:
        #print(f"Error occurred: {e}")
        return result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames, cache_map_virtuoso, load_map_query_input_output, row.name


def parallel_process_Row4Linking(df, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output):
    results = []

    with ThreadPoolExecutor(max_workers=args.num_cores_eLinking) as executor:
        # Submit tasks to ThreadPoolExecutor
        futures = [executor.submit(process_row4Linking, row, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output)
                   for _, row in df.iterrows()]

        # Collect results
        for future in as_completed(futures):
            try:

                result, ALLURIScontext, singleContext, globalContext, singleTriples, globalTriples, cache_map_geonames_Inner, cache_map_virtuoso_Inner, load_map_query_input_output_Inner, drm_idx = future.result()

                df.at[drm_idx,'namedEntity'] = result
                df.at[drm_idx, 'ALLURIScontext'] = ALLURIScontext
                df.at[drm_idx,'Context'] = singleContext
                df.at[drm_idx,'ContextGlobal'] = globalContext
                df.at[drm_idx, 'Triples'] = singleTriples
                df.at[drm_idx, 'TriplesGlobal'] = globalTriples
                # Recursively update cache_map files with values from _Inner --> actually, this will never happen, because when you pass a mutable object like a dictionary to a function,
                # changes made to that object within the function are reflected outside the function as well. This is because the function receives a reference to the original object,
                # rather than a copy of it.
                # cache_map_geonames, cache_map_virtuoso, load_map_query_input_output are like global variables, which is very good for the parallelization!
                if (cache_map_geonames == cache_map_geonames_Inner)==False:
                    update_nested_dict(cache_map_geonames, cache_map_geonames_Inner)
                if (cache_map_virtuoso == cache_map_virtuoso_Inner) == False:
                    update_nested_dict(cache_map_virtuoso, cache_map_virtuoso_Inner)
                if (load_map_query_input_output == load_map_query_input_output_Inner) == False:
                    update_nested_dict(load_map_query_input_output, load_map_query_input_output_Inner)

            except Exception as e:
                print(f"Error occurred: {e}")

    return df, cache_map_geonames, cache_map_virtuoso, load_map_query_input_output



def elinking(df_annotated_combined, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output, device):

    if "ALLURIScontext" not in df_annotated_combined.columns:
        df_annotated_combined["ALLURIScontext"] = None

    if args.num_cores_eLinking>1:
        # parallel elinking process
        #result
        df_annotated_combined, cache_map_geonames_AFTER, cache_map_virtuoso_AFTER, load_map_query_input_output_AFTER = parallel_process_Row4Linking(df_annotated_combined, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output)

        #if isinstance(result, list):
        #    result=pd.Series(result)  # I need this after the parallel processing

    else:
        # single processing
        result = df_annotated_combined.apply(lambda row: process_row4Linking(row, text_splitter, args, key_geonames, cache_map_geonames, key_virtuoso, cache_map_virtuoso, load_map_query_input_output), axis=1)

        #
        try:
            df_annotated_combined['namedEntity'] = result.str[0]
            df_annotated_combined['ALLURIScontext'] = result.str[1]
            df_annotated_combined['Context'] = result.str[2]
            df_annotated_combined['ContextGlobal'] = result.str[3]
            df_annotated_combined['Triples'] = result.str[4]
            df_annotated_combined['TriplesGlobal'] = result.str[5]
            cache_map_geonames_AFTER = result.str[6].iloc[-1]
            cache_map_virtuoso_AFTER = result.str[7].iloc[-1]
            load_map_query_input_output_AFTER = result.str[8].iloc[-1]  #
        except Exception as e:
            # print(f"Error occurred: {e}")
            df_annotated_combined['namedEntity'] = ""
            df_annotated_combined['ALLURIScontext'] = ""
            df_annotated_combined['Context'] = ""
            df_annotated_combined['ContextGlobal'] = ""
            df_annotated_combined['Triples'] = ""
            df_annotated_combined['TriplesGlobal'] = ""
            cache_map_geonames_AFTER = cache_map_geonames
            cache_map_virtuoso_AFTER = cache_map_virtuoso
            load_map_query_input_output_AFTER = load_map_query_input_output


    if args.num_cores_eLinking>1:
        # if parallel elinking process I need to sort again, because rows in late will arrive later
        df_annotated_combined = df_annotated_combined.sort_values(by=['SentenceRef', 'start', 'ToLink', 'word', 'score'],
                                                              ascending=[True, True, True, True, False])

    return df_annotated_combined, cache_map_geonames_AFTER, cache_map_virtuoso_AFTER, load_map_query_input_output_AFTER




def nerBio(text, ModelsSelection, CategoriesSelection, ScoreFilt, EntityLinking, KGchoices, history_dict: dict):

    if EntityLinking:
        EnableNEL="True"
    else:
        EnableNEL="False"

    if not text:
        html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
        return {"text": text, "entities": []}, html_output, dict()

    df_annotated = pd.DataFrame()

    parser = argparse.ArgumentParser()

    parser.add_argument("--model_id", type=str, default=models_List[0], help="model to use")

    parser.add_argument("--debug", type=str, default="True", help="set debug mode")

    parser.add_argument("--source_column", type=str, default="ContextToAnnotate")

    parser.add_argument("--entities_filter_threshold", type=int, default=ScoreFilt)

    parser.add_argument("--SEED", type=int, default=41)
    parser.add_argument("--batch_size", type=int, default=1)  # 4 - 8 - 16
    parser.add_argument("--num_cores_Gliner", type=int, default=num_cores_Gliner_forDemo, help="parallel processing for Gliner annotation")  # 0 means use the GPU for Gliner !

    parser.add_argument("--entity_linking", type=str, default=EnableNEL, help="whether to make entities linking or not")
    parser.add_argument("--geonameskey_filename", type=str, default="GEONAMES-API.key", help="file location where it is stored the geonames api key")
    parser.add_argument("--virtuosokey_filename", type=str, default="VIRTUOSO-dba.key", help="file location where it is stored the virtuoso endpoint dba pwd")
    parser.add_argument("--bioportalkey_filename", type=str, default="NCBO-BioPortal.key", help="file location where it is stored the NCBO  BioPortal api key")

    # consose 20250205:
    # KGchoices = None
    # KGchoices = ['SNOMED', 'LOINC', 'ICD10', 'NCIT']
    # KGchoices = ['SNOMED', 'LOINC', 'ICD10', 'MESH', 'NCIT']  # restricts the input to these values only
    if KGchoices:
        KGchoices.sort()
    parser.add_argument("--KG_restriction", nargs='+', choices=KGchoices, default=KGchoices,
                        help="List of ontologies to which restrict the entity linking task.")
    # # consose 20250502:
    # if Counter(KGchoices) == Counter(POSSIBLE_KGchoices_List):
    #     parser.add_argument("--USE_CACHE", type=str, default="True",
    #                         help="whether to use cache for the NER and NEL tasks or not")
    # else:
    #     # print("Lists do not have the same elements")
    #     parser.add_argument("--USE_CACHE", type=str, default="False",
    #                         help="whether to use cache for the NER and NEL tasks or not")
    parser.add_argument("--USE_CACHE", type=str, default="False", help="whether to use cache for the NER and NEL tasks or not")

    parser.add_argument("--num_cores_eLinking", type=int, default=1, help="parallel processing for the entity linking process")

    parser.add_argument("--computeEntityContext", type=str, default="False",
                        help="whether to extract a readable context from the extracted triples for the concept")
    parser.add_argument("--computeEntityGlobalContext", type=str, default="False",
                        help="whether to extract a readable context from the extracted triples of all the entities extracted from the endpoint for the concept")
    parser.add_argument("--UseRetrieverForContextCreation", type=str, default="True",
                        help="whether to use a retriever for the creation of the context of the entities from the triples coming from the KGs")

    parser.add_argument("--service_provider", type=str, default="no", help="llm service provider")
    parser.add_argument("--model_name", type=str, default="no", help="llm to use")
    parser.add_argument("--tokens_max", type=int, default=80000, help="max number of tokens to supply to the llm")

    parser.add_argument("--temperature", type=int, default=0.01)

    args = parser.parse_args()

    df_ToAnnotate = pd.DataFrame()

    #print("Are all models in any row of the 'model' column, case-insensitively?", all_models_in_any_row)
    #if (not history_dict) or (history_dict[args.source_column][0] != text) or (all_models_in_any_row == False):
    if (not history_dict) or (history_dict[args.source_column][0] != text):

        for model_id in models_List:  # always do all the annotations, only filter them afterwards
        #for model_id in ModelsSelection:

            # if history_dict and (history_dict[args.source_column][0] == text):
            #     if model_id in hhist['model'].unique():
            #         continue

            parser.set_defaults(model_id=model_id)

            args = parser.parse_args()

            print("ARGS:")
            print(args)

            # %% n machine learning tasks, particularly when dealing with models that have stochasticity involved (like text generation), it's important to set seeds for random number generators to ensure reproducibility of results. In the case of using models from the transformers library, you need to set seeds for both Python's random module, NumPy, and PyTorch to ensure that the results are the same every time you run the code.
            # Before you create the pipeline and run the text generation, set the seeds like this:
            random.seed(args.SEED)
            np.random.seed(args.SEED)
            torch.manual_seed(args.SEED)
            torch.cuda.manual_seed_all(args.SEED)
            ###

            df_ToAnnotate = pd.DataFrame({ "ToLink": [None], args.source_column: [text]})

            if "SentenceRef" not in df_ToAnnotate.columns:
                df_ToAnnotate["SentenceRef"] = None
                df_ToAnnotate = df_ToAnnotate[['SentenceRef'] + [col for col in df_ToAnnotate.columns if
                                                                 col != 'SentenceRef']]  # this moves it to the first position

            df_ToAnnotate['SentenceRef'] = df_ToAnnotate.index + 1
            df_ToAnnotate['SentenceRef'] = df_ToAnnotate['SentenceRef'].argsort().groupby(df_ToAnnotate[args.source_column]).transform('min').astype(int)
            df_ToAnnotate['SentenceRef'] = df_ToAnnotate['SentenceRef'].rank(method='dense').astype(int)


            pipeToUse = None
            if (("gliner" in args.model_id) == False) and (("NCBO" in args.model_id)== False) :
                pipeToUse = pipe_dict[args.model_id]

            new_annotations = annotate(df_ToAnnotate, args, pipeToUse, tokenizerGliner, modelGliner, modelGlinerBio, device)
            if not new_annotations.empty:
                if df_annotated.empty:
                    # If df_annotated is empty, just assign new_annotations to it
                    df_annotated = new_annotations
                else:
                    # If df_annotated is not empty, concatenate new_annotations to it
                    df_annotated = pd.concat([df_annotated, new_annotations], ignore_index=True)

        history = df_annotated.copy()

    else:

        print("ARGS:")
        print(args)

        # %% n machine learning tasks, particularly when dealing with models that have stochasticity involved (like text generation), it's important to set seeds for random number generators to ensure reproducibility of results. In the case of using models from the transformers library, you need to set seeds for both Python's random module, NumPy, and PyTorch to ensure that the results are the same every time you run the code.
        # Before you create the pipeline and run the text generation, set the seeds like this:
        random.seed(args.SEED)
        np.random.seed(args.SEED)
        torch.manual_seed(args.SEED)
        torch.cuda.manual_seed_all(args.SEED)
        ###

        history = pd.DataFrame(history_dict)
        df_annotated = history.copy()


    quoted_text = text.startswith('"') & text.endswith('"')
    if (not df_annotated.empty) or quoted_text:

        if (not df_annotated.empty):
            # filter now per models selection
            df_annotated = df_annotated[df_annotated['model'].str.lower().isin([model.lower() for model in ModelsSelection])]
            if df_annotated.empty and quoted_text==False:
                html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
                return {"text": text, "entities": []}, html_output, history.to_dict()

        df_annotated_combined = pd.DataFrame()
        if (not df_annotated.empty):
            df_annotated_combined = entitiesFusion(df_annotated,args)
            if df_annotated_combined.empty and quoted_text==False:
                html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
                return {"text": text, "entities": []}, html_output, history.to_dict()
            else:
                df_annotated_combined = is_cross_inside(df_annotated_combined, args, 0.999)  #I cut all the cross inside with the 0.99. to avoid the linking


        cache_prefix_fp = "LLMQUERYNER"
        cache_nameLLMs = cache_prefix_fp + "___" + "__".join(
            [args.service_provider, args.model_name, str(args.temperature)]).replace(
            " ", "_") + ".json"

        load_map_query_input_output = None
        if strtobool(args.USE_CACHE):
            if os.path.exists(cache_nameLLMs):
                with open(cache_nameLLMs) as f:
                    load_map_query_input_output = json.load(f)
            else:
                load_map_query_input_output = {}

        ### entity linking part:
        if strtobool(args.entity_linking):

            cache_map_geonames = None
            if strtobool(args.USE_CACHE):
                cache_filename = "CACHE_geonames.json"
                if os.path.exists(cache_filename):
                    with open(cache_filename) as f:
                        cache_map_geonames = json.load(f)
                else:
                    cache_map_geonames = {}

            #key_geonames = ""
            #if args.geonameskey_filename:
            #    fkeyname = args.geonameskey_filename
            #    with open(fkeyname) as f:
            #        key_geonames = f.read()
            key_geonames = os.environ['key_geonames']

            cache_map_virtuoso = None
            if strtobool(args.USE_CACHE):
                cacheVirtuoso_filename = "CACHE_virtuoso.json"
                if os.path.exists(cacheVirtuoso_filename):
                    with open(cacheVirtuoso_filename) as f:
                        cache_map_virtuoso = json.load(f)
                else:
                    cache_map_virtuoso = {}

            #key_virtuoso = ""
            #if args.virtuosokey_filename:
            #    fkeyname = args.virtuosokey_filename
            #    with open(fkeyname) as f:
            #        key_virtuoso = f.read()
            key_virtuoso = os.environ['key_virtuoso']

            # Here for the EXACT MATCHING "" - if the desired term has not been identified in the NER, add to the dataframe:

            if df_ToAnnotate.empty:
                df_ToAnnotate = pd.DataFrame({"ToLink": [None], args.source_column: [text]})

                if "SentenceRef" not in df_ToAnnotate.columns:
                    df_ToAnnotate["SentenceRef"] = None
                    df_ToAnnotate = df_ToAnnotate[['SentenceRef'] + [col for col in df_ToAnnotate.columns if
                                                                     col != 'SentenceRef']]  # this moves it to the first position

                df_ToAnnotate['SentenceRef'] = df_ToAnnotate.index + 1
                df_ToAnnotate['SentenceRef'] = df_ToAnnotate['SentenceRef'].argsort().groupby(
                    df_ToAnnotate[args.source_column]).transform('min').astype(int)
                df_ToAnnotate['SentenceRef'] = df_ToAnnotate['SentenceRef'].rank(method='dense').astype(int)

            # Define the condition to find missing SentenceRefs
            missing_sentence_refs = ~df_ToAnnotate['SentenceRef'].isin(df_annotated_combined['SentenceRef'])

            # Define the condition to check if ContextToAnnotate starts and ends with quotes
            quoted_context = df_ToAnnotate[args.source_column].str.startswith('"') & df_ToAnnotate[
                args.source_column].str.endswith('"')

            # Combine both conditions
            condition = missing_sentence_refs & quoted_context

            # Select rows from df_ToAnnotate that meet the condition
            rows_to_add = df_ToAnnotate[condition].copy()

            rows_to_add['model'] = "Forced"
            rows_to_add['entity_group'] = "MISC"
            rows_to_add['word'] = rows_to_add[args.source_column]
            rows_to_add['word'] = rows_to_add[args.source_column].apply(strip_quotes)
            rows_to_add['score'] = 1.0
            rows_to_add['start'] = int(1)
            rows_to_add['end'] = rows_to_add['word'].apply(len) + int(1)
            rows_to_add['IsGeo'] = None
            rows_to_add['IsBio'] = None
            rows_to_add['IsCrossInside'] = 0.0

            if df_annotated_combined.empty:
                df_annotated_combined = pd.DataFrame(columns=df_ToAnnotate.columns)

            # Append these rows to df_annotated_combined
            df_annotated_combined = pd.concat([df_annotated_combined, rows_to_add], ignore_index=True)

            df_annotated_combined['start'] = df_annotated_combined['start'].astype(int)
            df_annotated_combined['end'] = df_annotated_combined['end'].astype(int)

            df_annotated_combined = df_annotated_combined.sort_values(
                by=['SentenceRef', 'start', 'ToLink', 'word', 'score'],
                ascending=[True, True, True, True, False])

            # Now df_annotated_combined contains the additional rows

            df_annotated_combined, cache_map_geonames_AFTER, cache_map_virtuoso_AFTER, load_map_query_input_output_AFTER = elinking(df_annotated_combined,
                                                                                                                                 text_splitter, args, key_geonames,
                                                                                                                                 cache_map_geonames,
                                                                                                                                 key_virtuoso,
                                                                                                                                 cache_map_virtuoso,
                                                                                                                                    load_map_query_input_output,
                                                                                                                                    device)

            if strtobool(args.USE_CACHE):
                if cache_map_geonames_AFTER is not None:
                    with open(cache_filename, "w") as f:
                        json.dump(cache_map_geonames_AFTER, f)

                if cache_map_virtuoso_AFTER is not None:
                    with open(cacheVirtuoso_filename, "w") as f:
                        json.dump(cache_map_virtuoso_AFTER, f)

                if load_map_query_input_output_AFTER is not None:
                    with open(cache_nameLLMs, "w") as f:
                        json.dump(load_map_query_input_output_AFTER, f)

            ### end entity linking part


        ### filter by selected category only
        # #df_annotated_combined = df_annotated_combined[df_annotated_combined['entity_group'].str.lower().isin([cat.lower() for cat in CategoriesSelection])]
        # if "MED" in CategoriesSelection:
        #     filter_mask = df_annotated_combined['entity_group'].str.lower().isin(
        #         [cat.lower() for cat in CategoriesSelection]) | (df_annotated_combined['IsBio'] == 1)
        # else:
        #     filter_mask = df_annotated_combined['entity_group'].str.lower().isin(
        #         [cat.lower() for cat in CategoriesSelection])
        # df_annotated_combined = df_annotated_combined[filter_mask]
        #
        # if "MED" in CategoriesSelection:
        #     filter_mask = df_annotated_combined['entity_group'].str.lower().isin(
        #         [cat.lower() for cat in CategoriesSelection]) | (df_annotated_combined['IsBio'] == 1)
        # elif "OTHER" in CategoriesSelection:
        #     filter_mask = ~(
        #         df_annotated_combined['entity_group'].str.lower().isin([cat.lower() for cat in categories_List]))
        # else:
        #     filter_mask = df_annotated_combined['entity_group'].str.lower().isin(
        #         [cat.lower() for cat in CategoriesSelection])

        filter_mask = df_annotated_combined['entity_group'].str.lower().isin(
            [cat.lower() for cat in CategoriesSelection])
        if "MED" in CategoriesSelection:
            filter_mask |= df_annotated_combined['entity_group'].str.lower().isin(
                [cat.lower() for cat in CategoriesSelection]) | (df_annotated_combined['IsBio'] == 1)
        if "MISC" in CategoriesSelection:
            #filter_mask |= ~(df_annotated_combined['entity_group'].str.lower().isin([cat.lower() for cat in categories_List]))
            filter_mask |= ~(df_annotated_combined['entity_group'].str.lower().isin([cat.lower() for cat in categories_List])) & ~(df_annotated_combined['IsBio'] == 1)  # with this cluase, I'm including not only the categories labelled as MISC, but also the other that are not MED, PER, ORG, LOC

        df_annotated_combined = df_annotated_combined[filter_mask]
        if df_annotated_combined.empty:
            html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
            return {"text": text, "entities": []}, html_output, history.to_dict()

        ###

        #df_annotated_combined = is_cross_inside(df_annotated_combined, args)

        if 'IsCrossInside' in df_annotated_combined.columns:
            df_annotated_combined = df_annotated_combined[df_annotated_combined['IsCrossInside'] != 1]
            if df_annotated_combined.empty:
                html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
                return {"text": text, "entities": []}, html_output, history.to_dict()

        dict_annotated_combined_NER = df_annotated_combined[["end", "entity_group", "score", "start", "word"]].to_dict(orient="records")

        ### continue linking part:
        if strtobool(args.entity_linking):
            # ##### this is to pass the links:

            # Create a new column for the entities with links
            # #df_annotated_combined['entity_with_link'] = df_annotated_combined.apply(lambda row: f"<a href='{row['namedEntity']}' target='_blank'>{row['word']}</a>", axis=1)
            # df_annotated_combined['entity_with_link'] = df_annotated_combined.apply(
            #      lambda row: f"<a href='{row['namedEntity']}' target='_blank'>{row['word']}</a>" if pd.notnull(row['namedEntity']) else row[
            #          'word'], axis=1)
            #include the expl-rel prefix:
            #df_annotated_combined['entity_with_link'] = df_annotated_combined.apply(
            #    lambda row: f"<a href='https://expl-rels-dev-vast.apps.ocpt.jrc.ec.europa.eu/?concept={row['namedEntity']}' target='_blank'>{row['word']}</a>" if pd.notnull(row['namedEntity']) else row[
            #        'word'], axis=1)
            # df_annotated_combined['entity_with_link'] = df_annotated_combined.apply(
            #     lambda
            #         row: f"<a href='https://api-vast.jrc.service.ec.europa.eu/describe//?url={row['namedEntity']}' target='_blank'>{row['word']}</a>" if pd.notnull(
            #         row['namedEntity']) else row[
            #         'word'], axis=1)
            df_annotated_combined['entity_with_link'] = df_annotated_combined.apply(
                lambda
                    row: f"<a href='https://api-vast.jrc.service.ec.europa.eu/describe//?url={row['namedEntity']}' target='_blank'>{row['word']}</a>" if row['namedEntity'] not in [None, '', 'NaN', 'nan'] and pd.notnull(row['namedEntity']) else row[
                        'word'], axis=1) 
            

            # Create a new dictionary with the entity information and the link
            dict_annotated_combined_NEL = df_annotated_combined[
                ["end", "entity_group", "score", "start", "entity_with_link"]].to_dict(orient="records")

            # Sort the entities by their start index
            dict_annotated_combined_NEL.sort(key=lambda x: x['start'])

            # Create a dictionary to map entity groups to colors
            entity_colors = {
                "MED": "#E6E6E6",
                "PER": "#FFC0CB",
                "ORG": "#C6F4D6",
                "LOC": "#FFFFCC",
                "MISC": "#F5DEB3"
            }

            text_with_links = text
            offset = 0
            for entity in dict_annotated_combined_NEL:
                start = entity["start"] + offset
                end = entity["end"] + offset
                entity_text = entity["entity_with_link"]
                text_with_links = text_with_links[:start] + entity_text + text_with_links[end:]
                offset += len(entity_text) - (end - start)

            # # Create the text with entities highlighted and linked
            # text_with_links = text
            # offset = 0
            # for entity in dict_annotated_combined_NEL:
            #     start = entity["start"] + offset
            #     end = entity["end"] + offset
            #     entity_text = entity["entity_with_link"]
            #     entity_group = entity["entity_group"]
            #
            #     color = entity_colors.get(entity_group, "#dbeafe")  # Default
            #     darker_color = "#008080"
            #
            #     if "https:" in entity_text:
            #         text_with_links = text_with_links[
            #                           :start] + f'<span style="background-color: {color}; border-radius: 2px; padding: 2px 4px"><a style="color: {darker_color}" href="{entity_text.split(">")[1].split("<")[0]}">{entity_text.split(">")[1].split("<")[0]}</a> <span style="color: {darker_color}; font-size: 0.8em">{entity_group}</span></span>' + text_with_links[
            #                                                                                                                                                                                                                                                                                                                                 end:]
            #         offset += len(
            #             f'<span style="background-color: {color}; border-radius: 2px; padding: 2px 4px"><a style="color: {darker_color}" href="{entity_text.split(">")[1].split("<")[0]}">{entity_text.split(">")[1].split("<")[0]}</a> <span style="color: {darker_color}; font-size: 0.8em">{entity_group}</span></span>') - (
            #                               end - start)
            #         # text_with_links = text_with_links[:start] + f'<span style="background-color: {color}"><a href="{entity_text.split(">")[1].split("<")[0]}">{entity_text.split(">")[1].split("<")[0]}</a></span>' + text_with_links[end:]
            #         # offset += len(
            #         #     f'<span style="background-color: {color}"><a href="{entity_text.split(">")[1].split("<")[0]}">{entity_text.split(">")[1].split("<")[0]}</a></span>') - (
            #         #                       end - start)
            #         #
            #         #     text_with_links = text_with_links[:start] + entity_text + text_with_links[end:]
            #         #     offset += len(entity_text) - (end - start)
            #     else:
            #         text_with_links = text_with_links[
            #                           :start] + f'<span style="background-color: {color}; border-radius: 2px; padding: 2px 4px">{entity_text} <span style="color: {darker_color}; font-size: 0.8em">{entity_group}</span></span>' + text_with_links[end:]
            #         offset += len(
            #             f'<span style="background-color: {color}; border-radius: 2px; padding: 2px 4px">{entity_text} <span style="color: {darker_color}; font-size: 0.8em">{entity_group}</span></span>') - (
            #                           end - start)
            #         # text_with_links = text_with_links[
            #         #                   :start] + f'<span style="background-color: {color}">{entity_text}</span>' + text_with_links[
            #         #                                                                                               end:]
            #         # offset += len(
            #         #     f'<span style="background-color: {color}">{entity_text}</span>') - (end - start)

            html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text_with_links}</div>"
            return {"text": text, "entities": dict_annotated_combined_NER}, html_output, history.to_dict()

        else:
            html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
            return {"text": text, "entities": dict_annotated_combined_NER}, html_output, history.to_dict()

    else:

        html_output = f"<div class='gr-textbox' style='white-space: pre-wrap; overflow-wrap: break-word; padding: 10px; border: 1px solid #ddd; border-radius: 5px; font-family: monospace; font-size: 12px; line-height: 24px;'>{text}</div>"
        return {"text": text, "entities": []}, html_output, history.to_dict()



demo = gr.Interface(
    fn=nerBio,
    inputs=[
        gr.Textbox(label= "Input text", placeholder="Enter text here..."),
        gr.CheckboxGroup(models_List, label="ModelsSelection", value=models_List),
        gr.CheckboxGroup(categories_List, label="CategoriesSelection", value=categories_List),
        gr.Slider(minimum=0, maximum=1.0, step=0.1, label="Score", value=0.7),
        gr.Checkbox(label="Enable Named-Entity Linking (NEL)", value=False), #True False
        #gr.CheckboxGroup(POSSIBLE_KGchoices_List, label="KGchoices Selection", value=POSSIBLE_KGchoices_List, visible=True),
        gr.Dropdown(POSSIBLE_KGchoices_List, multiselect=True, label="KGchoices Selection", value=POSSIBLE_KGchoices_List),
        gr.State(value={})
    ],
    outputs=[
        gr.HighlightedText(label="Annotated Text"),
        gr.HTML(label="Linked Text", show_label=True, visible=True),  #   use gr.HTML to render the annotated text with links , visible
        gr.State()
    ],
    live=True,
    title="BioAnnotator: Biomedical Named-Entity Recognition (NER) and Linking (NEL)",
    description="Select one or more NER models and enter some text to get it processed. Please select also the entity categories you want to extract, as well as the score to use as a threshold for the NER extraction. Finally, select whether you want to perform Named-Entity Linking (NEL) and if you want to enable the filtering to some specific biomedical ontologies only (acronyms description at: https://bioportal.bioontology.org/ontologies. See also: https://citnet.tech.ec.europa.eu/CITnet/confluence/display/DIGHEALTH/Inventory+of+existing+KGs+related+to+the+Digital+Health+domain). ",
    examples=examples,
    cache_examples=False
)



demo.launch()
#demo.launch(share=True)  # Share your demo with just 1 extra parameter