katsuchi's picture
Create app.py
ad23810 verified
import gradio as gr
import torch
from peft import PeftModel
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import json
# Load model and tokenizer
base_model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=6)
model = PeftModel.from_pretrained(base_model, "katsuchi/bert-dair-ai-emotion")
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def predict_emotion(text):
# Tokenize input
tokens = tokenizer(text, return_tensors="pt", truncation=True, max_length=128)
# Get model prediction
with torch.no_grad():
outputs = model(tokens['input_ids'])
probs = torch.softmax(outputs.logits, dim=-1)
# Convert probabilities to percentages
percentages = (probs * 100).squeeze().tolist()
# Create emotion-percentage mapping
emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
emotion_probs = {
emotion: f"{percentage:.1f}%"
for emotion, percentage in zip(emotions, percentages)
}
# Sort by probability in descending order
sorted_emotions = dict(
sorted(emotion_probs.items(),
key=lambda x: float(x[1].rstrip('%')),
reverse=True)
)
# Format output
return json.dumps(sorted_emotions, indent=2)
# Create Gradio interface
iface = gr.Interface(
fn=predict_emotion,
inputs=gr.Textbox(
lines=3,
placeholder="Enter text here..."
),
outputs=gr.JSON(),
title="Emotion Classifier",
description="Predict emotions in text with confidence percentages",
examples=[
["I am so happy to see you!"],
["I'm really disappointed with the results."],
["That's absolutely terrifying!"],
["I love spending time with my family."]
]
)
if __name__ == "__main__":
iface.launch()