title: Diabetic Retinopathy Detection | |
emoji: ๐๏ธ | |
colorFrom: gray | |
colorTo: pink | |
sdk: gradio | |
sdk_version: 4.32.2 | |
app_file: app.py | |
pinned: false | |
license: apache-2.0 | |
# Diabetic Retinopathy Detection with AI | |
## Setup | |
### Cloning the repo | |
```bash | |
git clone https://github.com/SDAIA-KAUST-AI/diabetic-retinopathy-detection.git | |
``` | |
### Gradio app environment | |
Install from pip requirements file: | |
```bash | |
conda create -y -n retinopathy_app python=3.10 | |
conda activate retinopathy_app | |
pip install -r requirements.txt | |
python app.py | |
``` | |
The app will download 280 MB of files from S3 and launch. | |
Install manually: | |
```bash | |
pip install pytorch --index-url https://download.pytorch.org/whl/cpu | |
pip install gradio | |
pip install transformers | |
``` | |
### Training environment | |
Create conda environment from YAML: | |
```bash | |
mamba env create -n retinopathy_train -f environment.yml | |
``` | |
Download the data from [Kaggle](https://www.kaggle.com/competitions/diabetic-retinopathy-detection/data) or use kaggle API: | |
```bash | |
pip install kaggle | |
kaggle competitions download -c diabetic-retinopathy-detection | |
mkdir retinopathy_data/ | |
unzip diabetic-retinopathy-detection.zip -d retinopathy_data/ | |
``` | |
Launch training: | |
```bash | |
conda activate retinopathy_train | |
python train.py | |
``` | |
The trained model will be put into `lightning_logs/`. | |