Spaces:
No application file
No application file
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import DDPMWuerstchenScheduler, WuerstchenDecoderPipeline | |
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt | |
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class WuerstchenDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = WuerstchenDecoderPipeline | |
params = ["prompt"] | |
batch_params = ["image_embeddings", "prompt", "negative_prompt"] | |
required_optional_params = [ | |
"num_images_per_prompt", | |
"num_inference_steps", | |
"latents", | |
"negative_prompt", | |
"guidance_scale", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"] | |
def text_embedder_hidden_size(self): | |
return 32 | |
def time_input_dim(self): | |
return 32 | |
def block_out_channels_0(self): | |
return self.time_input_dim | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
projection_dim=self.text_embedder_hidden_size, | |
hidden_size=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModel(config).eval() | |
def dummy_vqgan(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"bottleneck_blocks": 1, | |
"num_vq_embeddings": 2, | |
} | |
model = PaellaVQModel(**model_kwargs) | |
return model.eval() | |
def dummy_decoder(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"c_cond": self.text_embedder_hidden_size, | |
"c_hidden": [320], | |
"nhead": [-1], | |
"blocks": [4], | |
"level_config": ["CT"], | |
"clip_embd": self.text_embedder_hidden_size, | |
"inject_effnet": [False], | |
} | |
model = WuerstchenDiffNeXt(**model_kwargs) | |
return model.eval() | |
def get_dummy_components(self): | |
decoder = self.dummy_decoder | |
text_encoder = self.dummy_text_encoder | |
tokenizer = self.dummy_tokenizer | |
vqgan = self.dummy_vqgan | |
scheduler = DDPMWuerstchenScheduler() | |
components = { | |
"decoder": decoder, | |
"vqgan": vqgan, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"scheduler": scheduler, | |
"latent_dim_scale": 4.0, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"image_embeddings": torch.ones((1, 4, 4, 4), device=device), | |
"prompt": "horse", | |
"generator": generator, | |
"guidance_scale": 1.0, | |
"num_inference_steps": 2, | |
"output_type": "np", | |
} | |
return inputs | |
def test_wuerstchen_decoder(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False) | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.0000, 0.0000, 0.0089, 1.0000, 1.0000, 0.3927, 1.0000, 1.0000, 1.0000]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=1e-5) | |
def test_attention_slicing_forward_pass(self): | |
test_max_difference = torch_device == "cpu" | |
test_mean_pixel_difference = False | |
self._test_attention_slicing_forward_pass( | |
test_max_difference=test_max_difference, | |
test_mean_pixel_difference=test_mean_pixel_difference, | |
) | |
def test_float16_inference(self): | |
super().test_float16_inference() | |