Spaces:
No application file
No application file
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from https://github.com/huggingface/diffusers/blob/64bf5d33b7ef1b1deac256bed7bd99b55020c4e0/src/diffusers/models/attention.py | |
from __future__ import annotations | |
from copy import deepcopy | |
from typing import Any, Dict, List, Literal, Optional, Callable, Tuple | |
import logging | |
from einops import rearrange | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.attention_processor import Attention as DiffusersAttention | |
from diffusers.models.attention import ( | |
BasicTransformerBlock as DiffusersBasicTransformerBlock, | |
AdaLayerNormZero, | |
AdaLayerNorm, | |
FeedForward, | |
) | |
from diffusers.models.attention_processor import AttnProcessor | |
from .attention_processor import IPAttention, BaseIPAttnProcessor | |
logger = logging.getLogger(__name__) | |
def not_use_xformers_anyway( | |
use_memory_efficient_attention_xformers: bool, | |
attention_op: Optional[Callable] = None, | |
): | |
return None | |
class BasicTransformerBlock(DiffusersBasicTransformerBlock): | |
print_idx = 0 | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0, | |
cross_attention_dim: int | None = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: int | None = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
allow_xformers: bool = True, | |
cross_attn_temporal_cond: bool = False, | |
image_scale: float = 1.0, | |
processor: AttnProcessor | None = None, | |
ip_adapter_cross_attn: bool = False, | |
need_t2i_facein: bool = False, | |
need_t2i_ip_adapter_face: bool = False, | |
): | |
if not only_cross_attention and double_self_attention: | |
cross_attention_dim = None | |
super().__init__( | |
dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout, | |
cross_attention_dim, | |
activation_fn, | |
num_embeds_ada_norm, | |
attention_bias, | |
only_cross_attention, | |
double_self_attention, | |
upcast_attention, | |
norm_elementwise_affine, | |
norm_type, | |
final_dropout, | |
attention_type, | |
) | |
self.attn1 = IPAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
cross_attn_temporal_cond=cross_attn_temporal_cond, | |
image_scale=image_scale, | |
ip_adapter_dim=cross_attention_dim | |
if only_cross_attention | |
else attention_head_dim, | |
facein_dim=cross_attention_dim | |
if only_cross_attention | |
else attention_head_dim, | |
processor=processor, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn2 = IPAttention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim | |
if not double_self_attention | |
else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_attn_temporal_cond=ip_adapter_cross_attn, | |
need_t2i_facein=need_t2i_facein, | |
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face, | |
image_scale=image_scale, | |
ip_adapter_dim=cross_attention_dim | |
if not double_self_attention | |
else attention_head_dim, | |
facein_dim=cross_attention_dim | |
if not double_self_attention | |
else attention_head_dim, | |
ip_adapter_face_dim=cross_attention_dim | |
if not double_self_attention | |
else attention_head_dim, | |
processor=processor, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
if self.attn1 is not None: | |
if not allow_xformers: | |
self.attn1.set_use_memory_efficient_attention_xformers = ( | |
not_use_xformers_anyway | |
) | |
if self.attn2 is not None: | |
if not allow_xformers: | |
self.attn2.set_use_memory_efficient_attention_xformers = ( | |
not_use_xformers_anyway | |
) | |
self.double_self_attention = double_self_attention | |
self.only_cross_attention = only_cross_attention | |
self.cross_attn_temporal_cond = cross_attn_temporal_cond | |
self.image_scale = image_scale | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
self_attn_block_embs: Optional[Tuple[List[torch.Tensor], List[None]]] = None, | |
self_attn_block_embs_mode: Literal["read", "write"] = "write", | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = ( | |
cross_attention_kwargs.get("scale", 1.0) | |
if cross_attention_kwargs is not None | |
else 1.0 | |
) | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
# 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备 | |
# special AttnProcessor needs input parameters in cross_attention_kwargs | |
original_cross_attention_kwargs = { | |
k: v | |
for k, v in cross_attention_kwargs.items() | |
if k | |
not in [ | |
"num_frames", | |
"sample_index", | |
"vision_conditon_frames_sample_index", | |
"vision_cond", | |
"vision_clip_emb", | |
"ip_adapter_scale", | |
"face_emb", | |
"facein_scale", | |
"ip_adapter_face_emb", | |
"ip_adapter_face_scale", | |
"do_classifier_free_guidance", | |
] | |
} | |
if "do_classifier_free_guidance" in cross_attention_kwargs: | |
do_classifier_free_guidance = cross_attention_kwargs[ | |
"do_classifier_free_guidance" | |
] | |
else: | |
do_classifier_free_guidance = False | |
# 2. Prepare GLIGEN inputs | |
original_cross_attention_kwargs = ( | |
original_cross_attention_kwargs.copy() | |
if original_cross_attention_kwargs is not None | |
else {} | |
) | |
gligen_kwargs = original_cross_attention_kwargs.pop("gligen", None) | |
# 返回self_attn的结果,适用于referencenet的输出给其他Unet来使用 | |
# return the result of self_attn, which is suitable for the output of referencenet to be used by other Unet | |
if ( | |
self_attn_block_embs is not None | |
and self_attn_block_embs_mode.lower() == "write" | |
): | |
# self_attn_block_emb = self.attn1.head_to_batch_dim(attn_output, out_dim=4) | |
self_attn_block_emb = norm_hidden_states | |
if not hasattr(self, "spatial_self_attn_idx"): | |
raise ValueError( | |
"must call unet.insert_spatial_self_attn_idx to generate spatial attn index" | |
) | |
basick_transformer_idx = self.spatial_self_attn_idx | |
if self.print_idx == 0: | |
logger.debug( | |
f"self_attn_block_embs, self_attn_block_embs_mode={self_attn_block_embs_mode}, " | |
f"basick_transformer_idx={basick_transformer_idx}, length={len(self_attn_block_embs)}, shape={self_attn_block_emb.shape}, " | |
# f"attn1 processor, {type(self.attn1.processor)}" | |
) | |
self_attn_block_embs[basick_transformer_idx] = self_attn_block_emb | |
# read and put referencenet emb into cross_attention_kwargs, which would be fused into attn_processor | |
if ( | |
self_attn_block_embs is not None | |
and self_attn_block_embs_mode.lower() == "read" | |
): | |
basick_transformer_idx = self.spatial_self_attn_idx | |
if not hasattr(self, "spatial_self_attn_idx"): | |
raise ValueError( | |
"must call unet.insert_spatial_self_attn_idx to generate spatial attn index" | |
) | |
if self.print_idx == 0: | |
logger.debug( | |
f"refer_self_attn_emb: , self_attn_block_embs_mode={self_attn_block_embs_mode}, " | |
f"length={len(self_attn_block_embs)}, idx={basick_transformer_idx}, " | |
# f"attn1 processor, {type(self.attn1.processor)}, " | |
) | |
ref_emb = self_attn_block_embs[basick_transformer_idx] | |
cross_attention_kwargs["refer_emb"] = ref_emb | |
if self.print_idx == 0: | |
logger.debug( | |
f"unet attention read, {self.spatial_self_attn_idx}", | |
) | |
# ------------------------------warning----------------------- | |
# 这两行由于使用了ref_emb会导致和checkpoint_train相关的训练错误,具体未知,留在这里作为警示 | |
# bellow annoated code will cause training error, keep it here as a warning | |
# logger.debug(f"ref_emb shape,{ref_emb.shape}, {ref_emb.mean()}") | |
# logger.debug( | |
# f"norm_hidden_states shape, {norm_hidden_states.shape}, {norm_hidden_states.mean()}", | |
# ) | |
if self.attn1 is None: | |
self.print_idx += 1 | |
return norm_hidden_states | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states | |
if self.only_cross_attention | |
else None, | |
attention_mask=attention_mask, | |
**( | |
cross_attention_kwargs | |
if isinstance(self.attn1.processor, BaseIPAttnProcessor) | |
else original_cross_attention_kwargs | |
), | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 推断的时候,对于uncondition_部分独立生成,排除掉 refer_emb, | |
# 首帧等的影响,避免生成参考了refer_emb、首帧等,又在uncond上去除了 | |
# in inference stage, eliminate influence of refer_emb, vis_cond on unconditionpart | |
# to avoid use that, and then eliminate in pipeline | |
# refer to moore-animate anyone | |
# do_classifier_free_guidance = False | |
if self.print_idx == 0: | |
logger.debug(f"do_classifier_free_guidance={do_classifier_free_guidance},") | |
if do_classifier_free_guidance: | |
hidden_states_c = attn_output.clone() | |
_uc_mask = ( | |
torch.Tensor( | |
[1] * (norm_hidden_states.shape[0] // 2) | |
+ [0] * (norm_hidden_states.shape[0] // 2) | |
) | |
.to(norm_hidden_states.device) | |
.bool() | |
) | |
hidden_states_c[_uc_mask] = self.attn1( | |
norm_hidden_states[_uc_mask], | |
encoder_hidden_states=norm_hidden_states[_uc_mask], | |
attention_mask=attention_mask, | |
) | |
attn_output = hidden_states_c.clone() | |
if "refer_emb" in cross_attention_kwargs: | |
del cross_attention_kwargs["refer_emb"] | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 2.5 ends | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) | |
if self.use_ada_layer_norm | |
else self.norm2(hidden_states) | |
) | |
# 特殊AttnProcessor需要的入参 在 cross_attention_kwargs 准备 | |
# special AttnProcessor needs input parameters in cross_attention_kwargs | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states | |
if not self.double_self_attention | |
else None, | |
attention_mask=encoder_attention_mask, | |
**( | |
original_cross_attention_kwargs | |
if not isinstance(self.attn2.processor, BaseIPAttnProcessor) | |
else cross_attention_kwargs | |
), | |
) | |
if self.print_idx == 0: | |
logger.debug( | |
f"encoder_hidden_states, type={type(encoder_hidden_states)}" | |
) | |
if encoder_hidden_states is not None: | |
logger.debug( | |
f"encoder_hidden_states, ={encoder_hidden_states.shape}" | |
) | |
# encoder_hidden_states_tmp = ( | |
# encoder_hidden_states | |
# if not self.double_self_attention | |
# else norm_hidden_states | |
# ) | |
# if do_classifier_free_guidance: | |
# hidden_states_c = attn_output.clone() | |
# _uc_mask = ( | |
# torch.Tensor( | |
# [1] * (norm_hidden_states.shape[0] // 2) | |
# + [0] * (norm_hidden_states.shape[0] // 2) | |
# ) | |
# .to(norm_hidden_states.device) | |
# .bool() | |
# ) | |
# hidden_states_c[_uc_mask] = self.attn2( | |
# norm_hidden_states[_uc_mask], | |
# encoder_hidden_states=encoder_hidden_states_tmp[_uc_mask], | |
# attention_mask=attention_mask, | |
# ) | |
# attn_output = hidden_states_c.clone() | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if self.norm3 is not None and self.ff is not None: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = ( | |
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
) | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = ( | |
norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
) | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk( | |
num_chunks, dim=self._chunk_dim | |
) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
self.print_idx += 1 | |
return hidden_states | |