kheopss's picture
Update app.py
b5253d5 verified
raw
history blame
5.81 kB
import nest_asyncio
import gradio as gr
import tiktoken
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import LLMRerank
import logging
import sys
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.llms.huggingface import HuggingFaceInferenceAPI, HuggingFaceLLM
from llama_index.core import Settings
from llama_index.llms.huggingface import HuggingFaceLLM
import torch
from transformers import BitsAndBytesConfig
from llama_index.core.prompts import PromptTemplate
from llama_index.llms.openai import OpenAI
import os
import pandas as pd
from llama_index.core import Document
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
import time
from huggingface_hub import login
from gradio import ChatMessage
nest_asyncio.apply()
hf_token = os.getenv('hf_token')
# Replace 'your_token_here' with your actual Hugging Face API token
login(token=hf_token)
# quantize to save memory
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
llm = HuggingFaceLLM(
model_name="kheopss/kheops_hermes-202k-e3-v0.14-bnb-16bit",
tokenizer_name="kheopss/kheops_hermes-202k-e3-v0.14-bnb-16bit",
context_window=3900,
max_new_tokens=2560,
model_kwargs={"quantization_config": quantization_config},
generate_kwargs={"temperature": 0.01, "top_k": 0.95, "top_p": 0.95},
device_map="cuda:0",
)
embed_model = HuggingFaceEmbedding(
model_name="jinaai/jina-embeddings-v3",
)
Settings.llm=llm
Settings.embed_model=embed_model
# Replace 'file_path.json' with the path to your JSON file
file_path = 'response_metropo_cleaned.json'
data = pd.read_json(file_path)
documents = [Document(text=row['values'],metadata={"filename": row['file_name'], "description":row['file_description']},) for index, row in data.iterrows()]
index = VectorStoreIndex.from_documents(documents, show_progress=True)
def get_retrieved_nodes(
query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False
):
query_bundle = QueryBundle(query_str)
# configure retriever
phase_01_start = time.time()
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=vector_top_k,
)
retrieved_nodes = retriever.retrieve(query_bundle)
phase_01_end = time.time()
print(f"Phase 01 <RETRIEVING> took : {phase_01_end-phase_01_start}")
phase_02_start = time.time()
if with_reranker:
# configure reranker
reranker = LLMRerank(
choice_batch_size=5,
top_n=reranker_top_n,
)
retrieved_nodes = reranker.postprocess_nodes(
retrieved_nodes, query_bundle
)
phase_02_end = time.time()
print(f"Phase 02 <RERANKING> took : {phase_02_end-phase_02_start}")
return retrieved_nodes
def get_all_text(new_nodes):
texts = []
for i, node in enumerate(new_nodes, 1):
texts.append(f"\nDocument {i} : {node.get_text()}")
return ' '.join(texts)
# Charger le tokenizer cl100k_base
encoding = tiktoken.get_encoding("cl100k_base")
def estimate_tokens(text):
# Encoder le texte pour obtenir les tokens
tokens = encoding.encode(text)
return len(tokens)
def process_final(user_prom,history):
import time
all_process_start = time.time()
system_p = '''
You are a conversational AI assistant tasked with helping public agents in Nice guide residents and citizens to appropriate services. Your role is to respond to user queries using only the information provided in the documents. You are not allowed to invent or infer information beyond what is given in the documents.
Always respond in French, ensuring that your answers are clear, concise, and grounded in the document content. Make sure to provide helpful and accurate responses based solely on the documents provided, while engaging in conversation to assist based on user questions.'''
new_nodes = get_retrieved_nodes(
user_prom,
vector_top_k=5,
reranker_top_n=3,
with_reranker=True,
)
get_texts = get_all_text(new_nodes)
print("PHASE 03 passing to LLM\n")
sys_p = f"<|im_start|>system \n{system_p}\n DOCUMENTS {get_texts}\n<|im_end|>"
prompt_f=""
total_tokens = estimate_tokens(prompt_f)
for val in reversed(history):
if val[0]:
user_p = f" <|im_start|>user \n {val[0]}\n<|im_end|>"
if val[1]:
assistant_p = f" <|im_start|>assistant \n {val[1]}\n<|im_end|>"
current_tokens = estimate_tokens(user_p+assistant_p)
# Vérifier si l'ajout de cet historique dépasse la limite
if total_tokens + current_tokens > 3000:
break # Arrêter l'ajout si on dépasse la limite
else:
# Ajouter à `prompt_f` et mettre à jour le nombre total de tokens
prompt_f = user_p + assistant_p + prompt_f
total_tokens += current_tokens
prompt_f=f"{sys_p} {prompt_f} <|im_start|>user \n{user_prom} \n<|im_end|><|im_start|>assistant \n"
phase_03_start = time.time()
gen =llm.stream_complete(formatted=True, prompt=prompt_f)
print (f"le nombre TOTAL de tokens : {total_tokens}\n")
print("_"*100)
print(prompt_f)
print("o"*100)
for response in gen:
yield response.text
description = """
<p>
<center>
<img src="https://www.nicecotedazur.org/wp-content/themes/mnca/images/logo-metropole-nca.png" alt="rick" width="250"/>
</center>
</p>
<p style="text-align:right"> Made by KHEOPS AI</p>
"""
demo = gr.ChatInterface(
fn=process_final,
title="METROPOLE CHATBOT",
description=description,
)
demo.launch(share=True, debug =True)