Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from clip2latent import models | |
from PIL import Image | |
device = "cuda" | |
model_choices = { | |
"faces": { | |
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.ckpt", | |
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/ffhq-sg2-510.yaml", | |
}, | |
"landscape": { | |
"checkpoint": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.ckpt", | |
"config": "https://huggingface.co/lambdalabs/clip2latent/resolve/main/lhq-sg3-410.yaml", | |
} | |
} | |
model_cache = {} | |
for k, v in model_choices.items(): | |
checkpoint = v["checkpoint"] | |
cfg_file = v["config"] | |
# Moving to the cpu seems to break the model, so just put all on the gpu | |
model_cache[k] = models.Clip2StyleGAN(cfg_file, device, checkpoint) | |
def infer(prompt, model_select, n_samples, scale): | |
model = model_cache[model_select] | |
images, _ = model(prompt, n_samples_per_txt=n_samples, cond_scale=scale, skips=250, clip_sort=True) | |
images = images.cpu() | |
make_im = lambda x: (255*x.clamp(-1, 1)/2 + 127.5).to(torch.uint8).permute(1,2,0).numpy() | |
images = [Image.fromarray(make_im(x)) for x in images] | |
return images | |
css = """ | |
a { | |
color: inherit; | |
text-decoration: underline; | |
} | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: #9d66e5; | |
background: #9d66e5; | |
} | |
input[type='range'] { | |
accent-color: #9d66e5; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-options { | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .logo{ filter: invert(1); } | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.acknowledgments h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
""" | |
examples = [ | |
[ | |
'a photograph of a happy person wearing sunglasses by the sea', | |
'faces', | |
2, | |
2, | |
], | |
[ | |
'a photograph of Captain Jean Luc Picard', | |
'faces', | |
2, | |
2, | |
], | |
[ | |
'a mountain in the middle of the sea', | |
'landscape', | |
2, | |
2, | |
], | |
[ | |
'The sun setting over the sea', | |
'landscape', | |
2, | |
2, | |
], | |
] | |
def main(): | |
block = gr.Blocks(css=css) | |
with block: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div> | |
<img class="logo" src="https://lambdalabs.com/static/images/lambda-logo.svg" alt="Lambda Logo" | |
style="margin: auto; max-width: 7rem;"> | |
<h1 style="font-weight: 900; font-size: 3rem;"> | |
clip2latent | |
</h1> | |
</div> | |
<p style="font-size: 94%"> | |
Official demo for <em>clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</em>, accepted to BMVC 2022 | |
</p> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Get the <a href="https://github.com/justinpinkney/clip2latent">code on GitHub</a>, see the <a href="#">paper on Arxiv</a>. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
text = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
).style( | |
border=(True, False, True, True), | |
rounded=(True, False, False, True), | |
container=False, | |
) | |
btn = gr.Button("Generate image").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto") | |
with gr.Row(elem_id="advanced-options"): | |
model_select = gr.Dropdown(label="Model", choices=["faces", "landscape"], value="faces",) | |
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0, maximum=10, value=2, step=0.5 | |
) | |
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, model_select, samples, scale], outputs=gallery, cache_examples=False) | |
ex.dataset.headers = [""] | |
text.submit(infer, inputs=[text, model_select, samples, scale], outputs=gallery) | |
btn.click(infer, inputs=[text, model_select, samples, scale], outputs=gallery) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Gradio Demo by Lambda Labs | |
</p> | |
</div> | |
<div class="acknowledgments"> | |
<img src="https://raw.githubusercontent.com/justinpinkney/clip2latent/main/images/headline-large.jpeg"></img> | |
<br> | |
<h2 style="font-size:1.5em">clip2latent: Text driven sampling of a pre-trained StyleGAN using denoising diffusion and CLIP</h2> | |
<p>Justin N. M. Pinkney and Chuan Li @ <a href="https://lambdalabs.com/">Lambda Inc.</a> | |
<br> | |
<br> | |
<em>Abstract:</em> | |
We introduce a new method to efficiently create text-to-image models from a pre-trained CLIP and StyleGAN. | |
It enables text driven sampling with an existing generative model without any external data or fine-tuning. | |
This is achieved by training a diffusion model conditioned on CLIP embeddings to sample latent vectors of a pre-trained StyleGAN, which we call <em>clip2latent</em>. | |
We leverage the alignment between CLIP’s image and text embeddings to avoid the need for any text labelled data for training the conditional diffusion model. | |
We demonstrate that clip2latent allows us to generate high-resolution (1024x1024 pixels) images based on text prompts with fast sampling, high image quality, and low training compute and data requirements. | |
We also show that the use of the well studied StyleGAN architecture, without further fine-tuning, allows us to directly apply existing methods to control and modify the generated images adding a further layer of control to our text-to-image pipeline. | |
</p> | |
<br> | |
<p>Trained using <a href="https://lambdalabs.com/service/gpu-cloud">Lambda GPU Cloud</a></p> | |
</div> | |
""" | |
) | |
block.queue() | |
block.launch() | |
if __name__ == "__main__": | |
main() |