Spaces:
Running
on
Zero
Running
on
Zero
# A reimplemented version in public environments by Xiao Fu and Mu Hu | |
from typing import Any, Dict, Union | |
import torch | |
from torch.utils.data import DataLoader, TensorDataset | |
import numpy as np | |
from tqdm.auto import tqdm | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
DDIMScheduler, | |
UNet2DConditionModel, | |
AutoencoderKL, | |
) | |
from diffusers.utils import BaseOutput | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from utils.image_util import resize_max_res,chw2hwc,colorize_depth_maps | |
from utils.colormap import kitti_colormap | |
from utils.depth_ensemble import ensemble_depths | |
from utils.batch_size import find_batch_size | |
import cv2 | |
class DepthPipelineOutput(BaseOutput): | |
""" | |
Output class for Marigold monocular depth prediction pipeline. | |
Args: | |
depth_np (`np.ndarray`): | |
Predicted depth map, with depth values in the range of [0, 1]. | |
depth_colored (`PIL.Image.Image`): | |
Colorized depth map, with the shape of [3, H, W] and values in [0, 1]. | |
uncertainty (`None` or `np.ndarray`): | |
Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling. | |
""" | |
depth_np: np.ndarray | |
depth_colored: Image.Image | |
uncertainty: Union[None, np.ndarray] | |
class DepthEstimationPipeline(DiffusionPipeline): | |
# two hyper-parameters | |
latent_scale_factor = 0.18215 | |
def __init__(self, | |
unet:UNet2DConditionModel, | |
vae:AutoencoderKL, | |
scheduler:DDIMScheduler, | |
text_encoder:CLIPTextModel, | |
tokenizer:CLIPTokenizer, | |
): | |
super().__init__() | |
self.register_modules( | |
unet=unet, | |
vae=vae, | |
scheduler=scheduler, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
) | |
self.empty_text_embed = None | |
def __call__(self, | |
input_image:Image, | |
denosing_steps: int =10, | |
ensemble_size: int =10, | |
processing_res: int = 768, | |
match_input_res:bool =True, | |
batch_size:int = 0, | |
color_map: str="Spectral", | |
show_progress_bar:bool = True, | |
ensemble_kwargs: Dict = None, | |
) -> DepthPipelineOutput: | |
# inherit from thea Diffusion Pipeline | |
device = self.device | |
input_size = input_image.size | |
# adjust the input resolution. | |
if not match_input_res: | |
assert ( | |
processing_res is not None | |
)," Value Error: `resize_output_back` is only valid with " | |
assert processing_res >=0 | |
assert denosing_steps >=1 | |
assert ensemble_size >=1 | |
# --------------- Image Processing ------------------------ | |
# Resize image | |
if processing_res >0: | |
input_image = resize_max_res( | |
input_image, max_edge_resolution=processing_res | |
) # resize image: for kitti is 231, 768 | |
# Convert the image to RGB, to 1. reomve the alpha channel. | |
input_image = input_image.convert("RGB") | |
image = np.array(input_image) | |
# Normalize RGB Values. | |
rgb = np.transpose(image,(2,0,1)) | |
rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1] | |
rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype) | |
rgb_norm = rgb_norm.to(device) | |
assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0 | |
# ----------------- predicting depth ----------------- | |
duplicated_rgb = torch.stack([rgb_norm] * ensemble_size) | |
single_rgb_dataset = TensorDataset(duplicated_rgb) | |
# find the batch size | |
if batch_size>0: | |
_bs = batch_size | |
else: | |
_bs = 1 | |
single_rgb_loader = DataLoader(single_rgb_dataset, batch_size=_bs, shuffle=False) | |
# predicted the depth | |
depth_pred_ls = [] | |
if show_progress_bar: | |
iterable_bar = tqdm( | |
single_rgb_loader, desc=" " * 2 + "Inference batches", leave=False | |
) | |
else: | |
iterable_bar = single_rgb_loader | |
for batch in iterable_bar: | |
(batched_image, )= batch # here the image is still around 0-1 | |
depth_pred_raw = self.single_infer( | |
input_rgb=batched_image, | |
num_inference_steps=denosing_steps, | |
show_pbar=show_progress_bar, | |
) | |
depth_pred_ls.append(depth_pred_raw.detach().clone()) | |
depth_preds = torch.concat(depth_pred_ls, axis=0).squeeze() #(10,224,768) | |
torch.cuda.empty_cache() # clear vram cache for ensembling | |
# ----------------- Test-time ensembling ----------------- | |
if ensemble_size > 1: | |
depth_pred, pred_uncert = ensemble_depths( | |
depth_preds, **(ensemble_kwargs or {}) | |
) | |
else: | |
depth_pred = depth_preds | |
pred_uncert = None | |
# ----------------- Post processing ----------------- | |
# Scale prediction to [0, 1] | |
min_d = torch.min(depth_pred) | |
max_d = torch.max(depth_pred) | |
depth_pred = (depth_pred - min_d) / (max_d - min_d) | |
# Convert to numpy | |
depth_pred = depth_pred.cpu().numpy().astype(np.float32) | |
# Resize back to original resolution | |
if match_input_res: | |
pred_img = Image.fromarray(depth_pred) | |
pred_img = pred_img.resize(input_size) | |
depth_pred = np.asarray(pred_img) | |
# Clip output range: current size is the original size | |
depth_pred = depth_pred.clip(0, 1) | |
# colorization using the KITTI Color Plan. | |
depth_pred_vis = depth_pred * 70 | |
disp_vis = 400/(depth_pred_vis+1e-3) | |
disp_vis = disp_vis.clip(0,500) | |
depth_color_pred = kitti_colormap(disp_vis) | |
# Colorize | |
depth_colored = colorize_depth_maps( | |
depth_pred, 0, 1, cmap=color_map | |
).squeeze() # [3, H, W], value in (0, 1) | |
depth_colored = (depth_colored * 255).astype(np.uint8) | |
depth_colored_hwc = chw2hwc(depth_colored) | |
depth_colored_img = Image.fromarray(depth_colored_hwc) | |
return DepthPipelineOutput( | |
depth_np = depth_pred, | |
depth_colored = depth_colored_img, | |
uncertainty=pred_uncert, | |
) | |
def __encode_empty_text(self): | |
""" | |
Encode text embedding for empty prompt | |
""" | |
prompt = "" | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="do_not_pad", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) #[1,2] | |
# print(text_input_ids.shape) | |
self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) #[1,2,1024] | |
def single_infer(self,input_rgb:torch.Tensor, | |
num_inference_steps:int, | |
show_pbar:bool,): | |
device = input_rgb.device | |
# Set timesteps: inherit from the diffuison pipeline | |
self.scheduler.set_timesteps(num_inference_steps, device=device) # here the numbers of the steps is only 10. | |
timesteps = self.scheduler.timesteps # [T] | |
# encode image | |
rgb_latent = self.encode_RGB(input_rgb) # 1/8 Resolution with a channel nums of 4. | |
# Initial depth map (Guassian noise) | |
depth_latent = torch.randn(rgb_latent.shape, device=device, dtype=self.dtype) # [B, 4, H/8, W/8] | |
# Batched empty text embedding | |
if self.empty_text_embed is None: | |
self.__encode_empty_text() | |
batch_empty_text_embed = self.empty_text_embed.repeat( | |
(rgb_latent.shape[0], 1, 1) | |
) # [B, 2, 1024] | |
# Denoising loop | |
if show_pbar: | |
iterable = tqdm( | |
enumerate(timesteps), | |
total=len(timesteps), | |
leave=False, | |
desc=" " * 4 + "Diffusion denoising", | |
) | |
else: | |
iterable = enumerate(timesteps) | |
for i, t in iterable: | |
unet_input = torch.cat([rgb_latent, depth_latent], dim=1) | |
# predict the noise residual | |
noise_pred = self.unet( | |
unet_input, t, encoder_hidden_states=batch_empty_text_embed | |
).sample # [B, 4, h, w] | |
# compute the previous noisy sample x_t -> x_t-1 | |
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample | |
torch.cuda.empty_cache() | |
depth = self.decode_depth(depth_latent) | |
depth = torch.clip(depth, -1.0, 1.0) | |
depth = (depth + 1.0) / 2.0 | |
return depth | |
def encode_RGB(self, rgb_in: torch.Tensor) -> torch.Tensor: | |
""" | |
Encode RGB image into latent. | |
Args: | |
rgb_in (`torch.Tensor`): | |
Input RGB image to be encoded. | |
Returns: | |
`torch.Tensor`: Image latent. | |
""" | |
# encode | |
h = self.vae.encoder(rgb_in) | |
moments = self.vae.quant_conv(h) | |
mean, logvar = torch.chunk(moments, 2, dim=1) | |
# scale latent | |
rgb_latent = mean * self.latent_scale_factor | |
return rgb_latent | |
def decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor: | |
""" | |
Decode depth latent into depth map. | |
Args: | |
depth_latent (`torch.Tensor`): | |
Depth latent to be decoded. | |
Returns: | |
`torch.Tensor`: Decoded depth map. | |
""" | |
# scale latent | |
depth_latent = depth_latent / self.latent_scale_factor | |
# decode | |
z = self.vae.post_quant_conv(depth_latent) | |
stacked = self.vae.decoder(z) | |
# mean of output channels | |
depth_mean = stacked.mean(dim=1, keepdim=True) | |
return depth_mean | |