lemonaddie commited on
Commit
2e23827
·
verified ·
1 Parent(s): 87f795e

Upload 11 files

Browse files
utils/batch_size.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import torch
4
+ import math
5
+
6
+
7
+ # Search table for suggested max. inference batch size
8
+ bs_search_table = [
9
+ # tested on A100-PCIE-80GB
10
+ {"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32},
11
+ {"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32},
12
+ # tested on A100-PCIE-40GB
13
+ {"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32},
14
+ {"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32},
15
+ {"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16},
16
+ {"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16},
17
+ # tested on RTX3090, RTX4090
18
+ {"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32},
19
+ {"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32},
20
+ {"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32},
21
+ {"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16},
22
+ {"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16},
23
+ {"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16},
24
+ # tested on GTX1080Ti
25
+ {"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32},
26
+ {"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32},
27
+ {"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16},
28
+ {"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16},
29
+ {"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16},
30
+ ]
31
+
32
+
33
+ def find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int:
34
+ """
35
+ Automatically search for suitable operating batch size.
36
+
37
+ Args:
38
+ ensemble_size (`int`):
39
+ Number of predictions to be ensembled.
40
+ input_res (`int`):
41
+ Operating resolution of the input image.
42
+
43
+ Returns:
44
+ `int`: Operating batch size.
45
+ """
46
+ if not torch.cuda.is_available():
47
+ return 1
48
+
49
+ total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3
50
+ filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype]
51
+ for settings in sorted(
52
+ filtered_bs_search_table,
53
+ key=lambda k: (k["res"], -k["total_vram"]),
54
+ ):
55
+ if input_res <= settings["res"] and total_vram >= settings["total_vram"]:
56
+ bs = settings["bs"]
57
+ if bs > ensemble_size:
58
+ bs = ensemble_size
59
+ elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size:
60
+ bs = math.ceil(ensemble_size / 2)
61
+ return bs
62
+
63
+ return 1
utils/colormap.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import numpy as np
4
+ import cv2
5
+
6
+ def kitti_colormap(disparity, maxval=-1):
7
+ """
8
+ A utility function to reproduce KITTI fake colormap
9
+ Arguments:
10
+ - disparity: numpy float32 array of dimension HxW
11
+ - maxval: maximum disparity value for normalization (if equal to -1, the maximum value in disparity will be used)
12
+
13
+ Returns a numpy uint8 array of shape HxWx3.
14
+ """
15
+ if maxval < 0:
16
+ maxval = np.max(disparity)
17
+
18
+ colormap = np.asarray([[0,0,0,114],[0,0,1,185],[1,0,0,114],[1,0,1,174],[0,1,0,114],[0,1,1,185],[1,1,0,114],[1,1,1,0]])
19
+ weights = np.asarray([8.771929824561404,5.405405405405405,8.771929824561404,5.747126436781609,8.771929824561404,5.405405405405405,8.771929824561404,0])
20
+ cumsum = np.asarray([0,0.114,0.299,0.413,0.587,0.701,0.8859999999999999,0.9999999999999999])
21
+
22
+ colored_disp = np.zeros([disparity.shape[0], disparity.shape[1], 3])
23
+ values = np.expand_dims(np.minimum(np.maximum(disparity/maxval, 0.), 1.), -1)
24
+ bins = np.repeat(np.repeat(np.expand_dims(np.expand_dims(cumsum,axis=0),axis=0), disparity.shape[1], axis=1), disparity.shape[0], axis=0)
25
+ diffs = np.where((np.repeat(values, 8, axis=-1) - bins) > 0, -1000, (np.repeat(values, 8, axis=-1) - bins))
26
+ index = np.argmax(diffs, axis=-1)-1
27
+
28
+ w = 1-(values[:,:,0]-cumsum[index])*np.asarray(weights)[index]
29
+
30
+
31
+ colored_disp[:,:,2] = (w*colormap[index][:,:,0] + (1.-w)*colormap[index+1][:,:,0])
32
+ colored_disp[:,:,1] = (w*colormap[index][:,:,1] + (1.-w)*colormap[index+1][:,:,1])
33
+ colored_disp[:,:,0] = (w*colormap[index][:,:,2] + (1.-w)*colormap[index+1][:,:,2])
34
+
35
+ return (colored_disp*np.expand_dims((disparity>0),-1)*255).astype(np.uint8)
36
+
37
+ def read_16bit_gt(path):
38
+ """
39
+ A utility function to read KITTI 16bit gt
40
+ Arguments:
41
+ - path: filepath
42
+ Returns a numpy float32 array of shape HxW.
43
+ """
44
+ gt = cv2.imread(path,-1).astype(np.float32)/256.
45
+ return gt
utils/common.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import json
4
+ import yaml
5
+ import logging
6
+ import os
7
+ import numpy as np
8
+ import sys
9
+
10
+ def load_loss_scheme(loss_config):
11
+ with open(loss_config, 'r') as f:
12
+ loss_json = yaml.safe_load(f)
13
+ return loss_json
14
+
15
+
16
+ DEBUG =0
17
+ logger = logging.getLogger()
18
+
19
+
20
+ if DEBUG:
21
+ #coloredlogs.install(level='DEBUG')
22
+ logger.setLevel(logging.DEBUG)
23
+ else:
24
+ #coloredlogs.install(level='INFO')
25
+ logger.setLevel(logging.INFO)
26
+
27
+
28
+ strhdlr = logging.StreamHandler()
29
+ logger.addHandler(strhdlr)
30
+ formatter = logging.Formatter('%(asctime)s [%(filename)s:%(lineno)d] %(levelname)s %(message)s')
31
+ strhdlr.setFormatter(formatter)
32
+
33
+
34
+
35
+ def count_parameters(model):
36
+ return sum(p.numel() for p in model.parameters() if p.requires_grad)
37
+
38
+ def check_path(path):
39
+ if not os.path.exists(path):
40
+ os.makedirs(path, exist_ok=True)
41
+
42
+
utils/dataset_configuration.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import numpy as np
7
+ import sys
8
+ sys.path.append("..")
9
+
10
+ from dataloader.mix_loader import MixDataset
11
+ from torch.utils.data import DataLoader
12
+ from dataloader import transforms
13
+ import os
14
+
15
+
16
+ # Get Dataset Here
17
+ def prepare_dataset(data_dir=None,
18
+ batch_size=1,
19
+ test_batch=1,
20
+ datathread=4,
21
+ logger=None):
22
+
23
+ # set the config parameters
24
+ dataset_config_dict = dict()
25
+
26
+ train_dataset = MixDataset(data_dir=data_dir)
27
+
28
+ img_height, img_width = train_dataset.get_img_size()
29
+
30
+ datathread = datathread
31
+ if os.environ.get('datathread') is not None:
32
+ datathread = int(os.environ.get('datathread'))
33
+
34
+ if logger is not None:
35
+ logger.info("Use %d processes to load data..." % datathread)
36
+
37
+ train_loader = DataLoader(train_dataset, batch_size = batch_size, \
38
+ shuffle = True, num_workers = datathread, \
39
+ pin_memory = True)
40
+
41
+ num_batches_per_epoch = len(train_loader)
42
+
43
+ dataset_config_dict['num_batches_per_epoch'] = num_batches_per_epoch
44
+ dataset_config_dict['img_size'] = (img_height,img_width)
45
+
46
+ return train_loader, dataset_config_dict
47
+
48
+ def depth_scale_shift_normalization(depth):
49
+
50
+ bsz = depth.shape[0]
51
+
52
+ depth_ = depth[:,0,:,:].reshape(bsz,-1).cpu().numpy()
53
+ min_value = torch.from_numpy(np.percentile(a=depth_,q=2,axis=1)).to(depth)[...,None,None,None]
54
+ max_value = torch.from_numpy(np.percentile(a=depth_,q=98,axis=1)).to(depth)[...,None,None,None]
55
+
56
+ normalized_depth = ((depth - min_value)/(max_value-min_value+1e-5) - 0.5) * 2
57
+ normalized_depth = torch.clip(normalized_depth, -1., 1.)
58
+
59
+ return normalized_depth
60
+
61
+
62
+
63
+ def resize_max_res_tensor(input_tensor, mode, recom_resolution=768):
64
+ assert input_tensor.shape[1]==3
65
+ original_H, original_W = input_tensor.shape[2:]
66
+ downscale_factor = min(recom_resolution/original_H, recom_resolution/original_W)
67
+
68
+ if mode == 'normal':
69
+ resized_input_tensor = F.interpolate(input_tensor,
70
+ scale_factor=downscale_factor,
71
+ mode='nearest')
72
+ else:
73
+ resized_input_tensor = F.interpolate(input_tensor,
74
+ scale_factor=downscale_factor,
75
+ mode='bilinear',
76
+ align_corners=False)
77
+
78
+ if mode == 'depth':
79
+ return resized_input_tensor / downscale_factor
80
+ else:
81
+ return resized_input_tensor
utils/de_normalized.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import numpy as np
4
+ from scipy.optimize import least_squares
5
+ import torch
6
+
7
+ def align_scale_shift(pred, target, clip_max):
8
+ mask = (target > 0) & (target < clip_max)
9
+ if mask.sum() > 10:
10
+ target_mask = target[mask]
11
+ pred_mask = pred[mask]
12
+ scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
13
+ return scale, shift
14
+ else:
15
+ return 1, 0
16
+
17
+ def align_scale(pred: torch.tensor, target: torch.tensor):
18
+ mask = target > 0
19
+ if torch.sum(mask) > 10:
20
+ scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
21
+ else:
22
+ scale = 1
23
+ pred_scale = pred * scale
24
+ return pred_scale, scale
25
+
26
+ def align_shift(pred: torch.tensor, target: torch.tensor):
27
+ mask = target > 0
28
+ if torch.sum(mask) > 10:
29
+ shift = torch.median(target[mask]) - (torch.median(pred[mask]) + 1e-8)
30
+ else:
31
+ shift = 0
32
+ pred_shift = pred + shift
33
+ return pred_shift, shift
utils/depth2normal.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import pickle
4
+ import os
5
+ import h5py
6
+ import numpy as np
7
+ import cv2
8
+ import torch
9
+ import torch.nn as nn
10
+ import glob
11
+
12
+
13
+ def init_image_coor(height, width):
14
+ x_row = np.arange(0, width)
15
+ x = np.tile(x_row, (height, 1))
16
+ x = x[np.newaxis, :, :]
17
+ x = x.astype(np.float32)
18
+ x = torch.from_numpy(x.copy()).cuda()
19
+ u_u0 = x - width/2.0
20
+
21
+ y_col = np.arange(0, height) # y_col = np.arange(0, height)
22
+ y = np.tile(y_col, (width, 1)).T
23
+ y = y[np.newaxis, :, :]
24
+ y = y.astype(np.float32)
25
+ y = torch.from_numpy(y.copy()).cuda()
26
+ v_v0 = y - height/2.0
27
+ return u_u0, v_v0
28
+
29
+
30
+ def depth_to_xyz(depth, focal_length):
31
+ b, c, h, w = depth.shape
32
+ u_u0, v_v0 = init_image_coor(h, w)
33
+ x = u_u0 * depth / focal_length[0]
34
+ y = v_v0 * depth / focal_length[1]
35
+ z = depth
36
+ pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
37
+ return pw
38
+
39
+
40
+ def get_surface_normal(xyz, patch_size=5):
41
+ # xyz: [1, h, w, 3]
42
+ x, y, z = torch.unbind(xyz, dim=3)
43
+ x = torch.unsqueeze(x, 0)
44
+ y = torch.unsqueeze(y, 0)
45
+ z = torch.unsqueeze(z, 0)
46
+
47
+ xx = x * x
48
+ yy = y * y
49
+ zz = z * z
50
+ xy = x * y
51
+ xz = x * z
52
+ yz = y * z
53
+ patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda()
54
+ xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2))
55
+ yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2))
56
+ zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2))
57
+ xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2))
58
+ xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2))
59
+ yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2))
60
+ ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch],
61
+ dim=4)
62
+ ATA = torch.squeeze(ATA)
63
+ ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3))
64
+ eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1])
65
+ ATA = ATA + eps_identity
66
+ x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2))
67
+ y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2))
68
+ z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2))
69
+ AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4)
70
+ AT1 = torch.squeeze(AT1)
71
+ AT1 = torch.unsqueeze(AT1, 3)
72
+
73
+ patch_num = 4
74
+ patch_x = int(AT1.size(1) / patch_num)
75
+ patch_y = int(AT1.size(0) / patch_num)
76
+ n_img = torch.randn(AT1.shape).cuda()
77
+ overlap = patch_size // 2 + 1
78
+ for x in range(int(patch_num)):
79
+ for y in range(int(patch_num)):
80
+ left_flg = 0 if x == 0 else 1
81
+ right_flg = 0 if x == patch_num -1 else 1
82
+ top_flg = 0 if y == 0 else 1
83
+ btm_flg = 0 if y == patch_num - 1 else 1
84
+ at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
85
+ x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
86
+ ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
87
+ x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
88
+ # n_img_tmp, _ = torch.solve(at1, ata)
89
+ n_img_tmp = torch.linalg.solve(ata, at1)
90
+
91
+ n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :]
92
+ n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select
93
+
94
+ n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True))
95
+ n_img_norm = n_img / n_img_L2
96
+
97
+ # re-orient normals consistently
98
+ orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0
99
+ n_img_norm[orient_mask] *= -1
100
+ return n_img_norm
101
+
102
+ def get_surface_normalv2(xyz, patch_size=5):
103
+ """
104
+ xyz: xyz coordinates
105
+ patch: [p1, p2, p3,
106
+ p4, p5, p6,
107
+ p7, p8, p9]
108
+ surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
109
+ return: normal [h, w, 3, b]
110
+ """
111
+ b, h, w, c = xyz.shape
112
+ half_patch = patch_size // 2
113
+ xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
114
+ xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz
115
+
116
+ # xyz_left_top = xyz_pad[:, :h, :w, :] # p1
117
+ # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
118
+ # xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7
119
+ # xyz_right_top = xyz_pad[:, :h, -w:, :] # p3
120
+ # xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9
121
+ # xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3
122
+
123
+ xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4
124
+ xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6
125
+ xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2
126
+ xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8
127
+ xyz_horizon = xyz_left - xyz_right # p4p6
128
+ xyz_vertical = xyz_top - xyz_bottom # p2p8
129
+
130
+ xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4
131
+ xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6
132
+ xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2
133
+ xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8
134
+ xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6
135
+ xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8
136
+
137
+ n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
138
+ n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)
139
+
140
+ # re-orient normals consistently
141
+ orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
142
+ n_img_1[orient_mask] *= -1
143
+ orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
144
+ n_img_2[orient_mask] *= -1
145
+
146
+ n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
147
+ n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)
148
+
149
+ n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
150
+ n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)
151
+
152
+ # average 2 norms
153
+ n_img_aver = n_img1_norm + n_img2_norm
154
+ n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
155
+ n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
156
+ # re-orient normals consistently
157
+ orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
158
+ n_img_aver_norm[orient_mask] *= -1
159
+ n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b]
160
+
161
+ # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
162
+ # plt.imshow(np.abs(a), cmap='rainbow')
163
+ # plt.show()
164
+ return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))
165
+
166
+ def surface_normal_from_depth(depth, focal_length, valid_mask=None):
167
+ # para depth: depth map, [b, c, h, w]
168
+ b, c, h, w = depth.shape
169
+ focal_length = focal_length[:, None, None, None]
170
+ depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
171
+ #depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
172
+ xyz = depth_to_xyz(depth_filter, focal_length)
173
+ sn_batch = []
174
+ for i in range(b):
175
+ xyz_i = xyz[i, :][None, :, :, :]
176
+ #normal = get_surface_normalv2(xyz_i)
177
+ normal = get_surface_normal(xyz_i)
178
+ sn_batch.append(normal)
179
+ sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w]
180
+
181
+ if valid_mask != None:
182
+ mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
183
+ sn_batch[mask_invalid] = 0.0
184
+
185
+ return sn_batch
186
+
utils/depth_ensemble.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+ from scipy.optimize import minimize
7
+
8
+ def inter_distances(tensors: torch.Tensor):
9
+ """
10
+ To calculate the distance between each two depth maps.
11
+ """
12
+ distances = []
13
+ for i, j in torch.combinations(torch.arange(tensors.shape[0])):
14
+ arr1 = tensors[i : i + 1]
15
+ arr2 = tensors[j : j + 1]
16
+ distances.append(arr1 - arr2)
17
+ dist = torch.concat(distances, dim=0)
18
+ return dist
19
+
20
+
21
+ def ensemble_depths(input_images:torch.Tensor,
22
+ regularizer_strength: float =0.02,
23
+ max_iter: int =2,
24
+ tol:float =1e-3,
25
+ reduction: str='median',
26
+ max_res: int=None):
27
+ """
28
+ To ensemble multiple affine-invariant depth images (up to scale and shift),
29
+ by aligning estimating the scale and shift
30
+ """
31
+
32
+ device = input_images.device
33
+ dtype = input_images.dtype
34
+ np_dtype = np.float32
35
+
36
+
37
+ original_input = input_images.clone()
38
+ n_img = input_images.shape[0]
39
+ ori_shape = input_images.shape
40
+
41
+ if max_res is not None:
42
+ scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:]))
43
+ if scale_factor < 1:
44
+ downscaler = torch.nn.Upsample(scale_factor=scale_factor, mode="nearest")
45
+ input_images = downscaler(torch.from_numpy(input_images)).numpy()
46
+
47
+ # init guess
48
+ _min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) # get the min value of each possible depth
49
+ _max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) # get the max value of each possible depth
50
+ s_init = 1.0 / (_max - _min).reshape((-1, 1, 1)) #(10,1,1) : re-scale'f scale
51
+ t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1)) #(10,1,1)
52
+
53
+ x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype) #(20,)
54
+
55
+ input_images = input_images.to(device)
56
+
57
+ # objective function
58
+ def closure(x):
59
+ l = len(x)
60
+ s = x[: int(l / 2)]
61
+ t = x[int(l / 2) :]
62
+ s = torch.from_numpy(s).to(dtype=dtype).to(device)
63
+ t = torch.from_numpy(t).to(dtype=dtype).to(device)
64
+
65
+ transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1))
66
+ dists = inter_distances(transformed_arrays)
67
+ sqrt_dist = torch.sqrt(torch.mean(dists**2))
68
+
69
+ if "mean" == reduction:
70
+ pred = torch.mean(transformed_arrays, dim=0)
71
+ elif "median" == reduction:
72
+ pred = torch.median(transformed_arrays, dim=0).values
73
+ else:
74
+ raise ValueError
75
+
76
+ near_err = torch.sqrt((0 - torch.min(pred)) ** 2)
77
+ far_err = torch.sqrt((1 - torch.max(pred)) ** 2)
78
+
79
+ err = sqrt_dist + (near_err + far_err) * regularizer_strength
80
+ err = err.detach().cpu().numpy().astype(np_dtype)
81
+ return err
82
+
83
+ res = minimize(
84
+ closure, x, method="BFGS", tol=tol, options={"maxiter": max_iter, "disp": False}
85
+ )
86
+ x = res.x
87
+ l = len(x)
88
+ s = x[: int(l / 2)]
89
+ t = x[int(l / 2) :]
90
+
91
+ # Prediction
92
+ s = torch.from_numpy(s).to(dtype=dtype).to(device)
93
+ t = torch.from_numpy(t).to(dtype=dtype).to(device)
94
+ transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1) #[10,H,W]
95
+
96
+
97
+ if "mean" == reduction:
98
+ aligned_images = torch.mean(transformed_arrays, dim=0)
99
+ std = torch.std(transformed_arrays, dim=0)
100
+ uncertainty = std
101
+
102
+ elif "median" == reduction:
103
+ aligned_images = torch.median(transformed_arrays, dim=0).values
104
+ # MAD (median absolute deviation) as uncertainty indicator
105
+ abs_dev = torch.abs(transformed_arrays - aligned_images)
106
+ mad = torch.median(abs_dev, dim=0).values
107
+ uncertainty = mad
108
+
109
+ # Scale and shift to [0, 1]
110
+ _min = torch.min(aligned_images)
111
+ _max = torch.max(aligned_images)
112
+ aligned_images = (aligned_images - _min) / (_max - _min)
113
+ uncertainty /= _max - _min
114
+
115
+ return aligned_images, uncertainty
utils/image_util.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import matplotlib
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+
8
+
9
+
10
+
11
+ def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image:
12
+ """
13
+ Resize image to limit maximum edge length while keeping aspect ratio.
14
+ Args:
15
+ img (`Image.Image`):
16
+ Image to be resized.
17
+ max_edge_resolution (`int`):
18
+ Maximum edge length (pixel).
19
+ Returns:
20
+ `Image.Image`: Resized image.
21
+ """
22
+
23
+ original_width, original_height = img.size
24
+
25
+ downscale_factor = min(
26
+ max_edge_resolution / original_width, max_edge_resolution / original_height
27
+ )
28
+
29
+ new_width = int(original_width * downscale_factor)
30
+ new_height = int(original_height * downscale_factor)
31
+
32
+ resized_img = img.resize((new_width, new_height))
33
+ return resized_img
34
+
35
+
36
+ def colorize_depth_maps(
37
+ depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
38
+ ):
39
+ """
40
+ Colorize depth maps.
41
+ """
42
+ assert len(depth_map.shape) >= 2, "Invalid dimension"
43
+
44
+ if isinstance(depth_map, torch.Tensor):
45
+ depth = depth_map.detach().clone().squeeze().numpy()
46
+ elif isinstance(depth_map, np.ndarray):
47
+ depth = depth_map.copy().squeeze()
48
+ # reshape to [ (B,) H, W ]
49
+ if depth.ndim < 3:
50
+ depth = depth[np.newaxis, :, :]
51
+
52
+ # colorize
53
+ cm = matplotlib.colormaps[cmap]
54
+ depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
55
+ img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1
56
+ img_colored_np = np.rollaxis(img_colored_np, 3, 1)
57
+
58
+ if valid_mask is not None:
59
+ if isinstance(depth_map, torch.Tensor):
60
+ valid_mask = valid_mask.detach().numpy()
61
+ valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W]
62
+ if valid_mask.ndim < 3:
63
+ valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
64
+ else:
65
+ valid_mask = valid_mask[:, np.newaxis, :, :]
66
+ valid_mask = np.repeat(valid_mask, 3, axis=1)
67
+ img_colored_np[~valid_mask] = 0
68
+
69
+ if isinstance(depth_map, torch.Tensor):
70
+ img_colored = torch.from_numpy(img_colored_np).float()
71
+ elif isinstance(depth_map, np.ndarray):
72
+ img_colored = img_colored_np
73
+
74
+ return img_colored
75
+
76
+
77
+ def chw2hwc(chw):
78
+ assert 3 == len(chw.shape)
79
+ if isinstance(chw, torch.Tensor):
80
+ hwc = torch.permute(chw, (1, 2, 0))
81
+ elif isinstance(chw, np.ndarray):
82
+ hwc = np.moveaxis(chw, 0, -1)
83
+ return hwc
utils/normal_ensemble.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import numpy as np
4
+ import torch
5
+
6
+ def ensemble_normals(input_images:torch.Tensor):
7
+ normal_preds = input_images
8
+
9
+ bsz, d, h, w = normal_preds.shape
10
+ normal_preds = normal_preds / (torch.norm(normal_preds, p=2, dim=1).unsqueeze(1)+1e-5)
11
+
12
+ phi = torch.atan2(normal_preds[:,1,:,:], normal_preds[:,0,:,:]).mean(dim=0)
13
+ theta = torch.atan2(torch.norm(normal_preds[:,:2,:,:], p=2, dim=1), normal_preds[:,2,:,:]).mean(dim=0)
14
+ normal_pred = torch.zeros((d,h,w)).to(normal_preds)
15
+ normal_pred[0,:,:] = torch.sin(theta) * torch.cos(phi)
16
+ normal_pred[1,:,:] = torch.sin(theta) * torch.sin(phi)
17
+ normal_pred[2,:,:] = torch.cos(theta)
18
+
19
+ angle_error = torch.acos(torch.cosine_similarity(normal_pred[None], normal_preds, dim=1))
20
+ normal_idx = torch.argmin(angle_error.reshape(bsz,-1).sum(-1))
21
+
22
+ return normal_preds[normal_idx]
utils/seed_all.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Bingxin Ke, ETH Zurich. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # --------------------------------------------------------------------------
15
+ # If you find this code useful, we kindly ask you to cite our paper in your work.
16
+ # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
17
+ # More information about the method can be found at https://marigoldmonodepth.github.io
18
+ # --------------------------------------------------------------------------
19
+
20
+
21
+ import numpy as np
22
+ import random
23
+ import torch
24
+
25
+
26
+ def seed_all(seed: int = 0):
27
+ """
28
+ Set random seeds of all components.
29
+ """
30
+ random.seed(seed)
31
+ np.random.seed(seed)
32
+ torch.manual_seed(seed)
33
+ torch.cuda.manual_seed_all(seed)
utils/surface_normal.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A reimplemented version in public environments by Xiao Fu and Mu Hu
2
+
3
+ import torch
4
+ import numpy as np
5
+ import torch.nn as nn
6
+
7
+
8
+ def init_image_coor(height, width):
9
+ x_row = np.arange(0, width)
10
+ x = np.tile(x_row, (height, 1))
11
+ x = x[np.newaxis, :, :]
12
+ x = x.astype(np.float32)
13
+ x = torch.from_numpy(x.copy()).cuda()
14
+ u_u0 = x - width/2.0
15
+
16
+ y_col = np.arange(0, height) # y_col = np.arange(0, height)
17
+ y = np.tile(y_col, (width, 1)).T
18
+ y = y[np.newaxis, :, :]
19
+ y = y.astype(np.float32)
20
+ y = torch.from_numpy(y.copy()).cuda()
21
+ v_v0 = y - height/2.0
22
+ return u_u0, v_v0
23
+
24
+
25
+ def depth_to_xyz(depth, focal_length):
26
+ b, c, h, w = depth.shape
27
+ u_u0, v_v0 = init_image_coor(h, w)
28
+ x = u_u0 * depth / focal_length
29
+ y = v_v0 * depth / focal_length
30
+ z = depth
31
+ pw = torch.cat([x, y, z], 1).permute(0, 2, 3, 1) # [b, h, w, c]
32
+ return pw
33
+
34
+
35
+ def get_surface_normal(xyz, patch_size=3):
36
+ # xyz: [1, h, w, 3]
37
+ x, y, z = torch.unbind(xyz, dim=3)
38
+ x = torch.unsqueeze(x, 0)
39
+ y = torch.unsqueeze(y, 0)
40
+ z = torch.unsqueeze(z, 0)
41
+
42
+ xx = x * x
43
+ yy = y * y
44
+ zz = z * z
45
+ xy = x * y
46
+ xz = x * z
47
+ yz = y * z
48
+ patch_weight = torch.ones((1, 1, patch_size, patch_size), requires_grad=False).cuda()
49
+ xx_patch = nn.functional.conv2d(xx, weight=patch_weight, padding=int(patch_size / 2))
50
+ yy_patch = nn.functional.conv2d(yy, weight=patch_weight, padding=int(patch_size / 2))
51
+ zz_patch = nn.functional.conv2d(zz, weight=patch_weight, padding=int(patch_size / 2))
52
+ xy_patch = nn.functional.conv2d(xy, weight=patch_weight, padding=int(patch_size / 2))
53
+ xz_patch = nn.functional.conv2d(xz, weight=patch_weight, padding=int(patch_size / 2))
54
+ yz_patch = nn.functional.conv2d(yz, weight=patch_weight, padding=int(patch_size / 2))
55
+ ATA = torch.stack([xx_patch, xy_patch, xz_patch, xy_patch, yy_patch, yz_patch, xz_patch, yz_patch, zz_patch],
56
+ dim=4)
57
+ ATA = torch.squeeze(ATA)
58
+ ATA = torch.reshape(ATA, (ATA.size(0), ATA.size(1), 3, 3))
59
+ eps_identity = 1e-6 * torch.eye(3, device=ATA.device, dtype=ATA.dtype)[None, None, :, :].repeat([ATA.size(0), ATA.size(1), 1, 1])
60
+ ATA = ATA + eps_identity
61
+ x_patch = nn.functional.conv2d(x, weight=patch_weight, padding=int(patch_size / 2))
62
+ y_patch = nn.functional.conv2d(y, weight=patch_weight, padding=int(patch_size / 2))
63
+ z_patch = nn.functional.conv2d(z, weight=patch_weight, padding=int(patch_size / 2))
64
+ AT1 = torch.stack([x_patch, y_patch, z_patch], dim=4)
65
+ AT1 = torch.squeeze(AT1)
66
+ AT1 = torch.unsqueeze(AT1, 3)
67
+
68
+ patch_num = 4
69
+ patch_x = int(AT1.size(1) / patch_num)
70
+ patch_y = int(AT1.size(0) / patch_num)
71
+ n_img = torch.randn(AT1.shape).cuda()
72
+ overlap = patch_size // 2 + 1
73
+ for x in range(int(patch_num)):
74
+ for y in range(int(patch_num)):
75
+ left_flg = 0 if x == 0 else 1
76
+ right_flg = 0 if x == patch_num -1 else 1
77
+ top_flg = 0 if y == 0 else 1
78
+ btm_flg = 0 if y == patch_num - 1 else 1
79
+ at1 = AT1[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
80
+ x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
81
+ ata = ATA[y * patch_y - top_flg * overlap:(y + 1) * patch_y + btm_flg * overlap,
82
+ x * patch_x - left_flg * overlap:(x + 1) * patch_x + right_flg * overlap]
83
+ n_img_tmp, _ = torch.solve(at1, ata)
84
+
85
+ n_img_tmp_select = n_img_tmp[top_flg * overlap:patch_y + top_flg * overlap, left_flg * overlap:patch_x + left_flg * overlap, :, :]
86
+ n_img[y * patch_y:y * patch_y + patch_y, x * patch_x:x * patch_x + patch_x, :, :] = n_img_tmp_select
87
+
88
+ n_img_L2 = torch.sqrt(torch.sum(n_img ** 2, dim=2, keepdim=True))
89
+ n_img_norm = n_img / n_img_L2
90
+
91
+ # re-orient normals consistently
92
+ orient_mask = torch.sum(torch.squeeze(n_img_norm) * torch.squeeze(xyz), dim=2) > 0
93
+ n_img_norm[orient_mask] *= -1
94
+ return n_img_norm
95
+
96
+ def get_surface_normalv2(xyz, patch_size=3):
97
+ """
98
+ xyz: xyz coordinates
99
+ patch: [p1, p2, p3,
100
+ p4, p5, p6,
101
+ p7, p8, p9]
102
+ surface_normal = [(p9-p1) x (p3-p7)] + [(p6-p4) - (p8-p2)]
103
+ return: normal [h, w, 3, b]
104
+ """
105
+ b, h, w, c = xyz.shape
106
+ half_patch = patch_size // 2
107
+ xyz_pad = torch.zeros((b, h + patch_size - 1, w + patch_size - 1, c), dtype=xyz.dtype, device=xyz.device)
108
+ xyz_pad[:, half_patch:-half_patch, half_patch:-half_patch, :] = xyz
109
+
110
+ # xyz_left_top = xyz_pad[:, :h, :w, :] # p1
111
+ # xyz_right_bottom = xyz_pad[:, -h:, -w:, :]# p9
112
+ # xyz_left_bottom = xyz_pad[:, -h:, :w, :] # p7
113
+ # xyz_right_top = xyz_pad[:, :h, -w:, :] # p3
114
+ # xyz_cross1 = xyz_left_top - xyz_right_bottom # p1p9
115
+ # xyz_cross2 = xyz_left_bottom - xyz_right_top # p7p3
116
+
117
+ xyz_left = xyz_pad[:, half_patch:half_patch + h, :w, :] # p4
118
+ xyz_right = xyz_pad[:, half_patch:half_patch + h, -w:, :] # p6
119
+ xyz_top = xyz_pad[:, :h, half_patch:half_patch + w, :] # p2
120
+ xyz_bottom = xyz_pad[:, -h:, half_patch:half_patch + w, :] # p8
121
+ xyz_horizon = xyz_left - xyz_right # p4p6
122
+ xyz_vertical = xyz_top - xyz_bottom # p2p8
123
+
124
+ xyz_left_in = xyz_pad[:, half_patch:half_patch + h, 1:w+1, :] # p4
125
+ xyz_right_in = xyz_pad[:, half_patch:half_patch + h, patch_size-1:patch_size-1+w, :] # p6
126
+ xyz_top_in = xyz_pad[:, 1:h+1, half_patch:half_patch + w, :] # p2
127
+ xyz_bottom_in = xyz_pad[:, patch_size-1:patch_size-1+h, half_patch:half_patch + w, :] # p8
128
+ xyz_horizon_in = xyz_left_in - xyz_right_in # p4p6
129
+ xyz_vertical_in = xyz_top_in - xyz_bottom_in # p2p8
130
+
131
+ n_img_1 = torch.cross(xyz_horizon_in, xyz_vertical_in, dim=3)
132
+ n_img_2 = torch.cross(xyz_horizon, xyz_vertical, dim=3)
133
+
134
+ # re-orient normals consistently
135
+ orient_mask = torch.sum(n_img_1 * xyz, dim=3) > 0
136
+ n_img_1[orient_mask] *= -1
137
+ orient_mask = torch.sum(n_img_2 * xyz, dim=3) > 0
138
+ n_img_2[orient_mask] *= -1
139
+
140
+ n_img1_L2 = torch.sqrt(torch.sum(n_img_1 ** 2, dim=3, keepdim=True))
141
+ n_img1_norm = n_img_1 / (n_img1_L2 + 1e-8)
142
+
143
+ n_img2_L2 = torch.sqrt(torch.sum(n_img_2 ** 2, dim=3, keepdim=True))
144
+ n_img2_norm = n_img_2 / (n_img2_L2 + 1e-8)
145
+
146
+ # average 2 norms
147
+ n_img_aver = n_img1_norm + n_img2_norm
148
+ n_img_aver_L2 = torch.sqrt(torch.sum(n_img_aver ** 2, dim=3, keepdim=True))
149
+ n_img_aver_norm = n_img_aver / (n_img_aver_L2 + 1e-8)
150
+ # re-orient normals consistently
151
+ orient_mask = torch.sum(n_img_aver_norm * xyz, dim=3) > 0
152
+ n_img_aver_norm[orient_mask] *= -1
153
+ n_img_aver_norm_out = n_img_aver_norm.permute((1, 2, 3, 0)) # [h, w, c, b]
154
+
155
+ # a = torch.sum(n_img1_norm_out*n_img2_norm_out, dim=2).cpu().numpy().squeeze()
156
+ # plt.imshow(np.abs(a), cmap='rainbow')
157
+ # plt.show()
158
+ return n_img_aver_norm_out#n_img1_norm.permute((1, 2, 3, 0))
159
+
160
+ def surface_normal_from_depth(depth, focal_length, valid_mask=None):
161
+ # para depth: depth map, [b, c, h, w]
162
+ b, c, h, w = depth.shape
163
+ focal_length = focal_length[:, None, None, None]
164
+ depth_filter = nn.functional.avg_pool2d(depth, kernel_size=3, stride=1, padding=1)
165
+ depth_filter = nn.functional.avg_pool2d(depth_filter, kernel_size=3, stride=1, padding=1)
166
+ xyz = depth_to_xyz(depth_filter, focal_length)
167
+ sn_batch = []
168
+ for i in range(b):
169
+ xyz_i = xyz[i, :][None, :, :, :]
170
+ normal = get_surface_normalv2(xyz_i)
171
+ sn_batch.append(normal)
172
+ sn_batch = torch.cat(sn_batch, dim=3).permute((3, 2, 0, 1)) # [b, c, h, w]
173
+ mask_invalid = (~valid_mask).repeat(1, 3, 1, 1)
174
+ sn_batch[mask_invalid] = 0.0
175
+
176
+ return sn_batch
177
+
178
+
179
+ def vis_normal(normal):
180
+ """
181
+ Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255]
182
+ @para normal: surface normal, [h, w, 3], numpy.array
183
+ """
184
+ n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True))
185
+ n_img_norm = normal / (n_img_L2 + 1e-8)
186
+ normal_vis = n_img_norm * 127
187
+ normal_vis += 128
188
+ normal_vis = normal_vis.astype(np.uint8)
189
+ return normal_vis
190
+
191
+ def vis_normal2(normals):
192
+ '''
193
+ Montage of normal maps. Vectors are unit length and backfaces thresholded.
194
+ '''
195
+ x = normals[:, :, 0] # horizontal; pos right
196
+ y = normals[:, :, 1] # depth; pos far
197
+ z = normals[:, :, 2] # vertical; pos up
198
+ backfacing = (z > 0)
199
+ norm = np.sqrt(np.sum(normals**2, axis=2))
200
+ zero = (norm < 1e-5)
201
+ x += 1.0; x *= 0.5
202
+ y += 1.0; y *= 0.5
203
+ z = np.abs(z)
204
+ x[zero] = 0.0
205
+ y[zero] = 0.0
206
+ z[zero] = 0.0
207
+ normals[:, :, 0] = x # horizontal; pos right
208
+ normals[:, :, 1] = y # depth; pos far
209
+ normals[:, :, 2] = z # vertical; pos up
210
+ return normals
211
+
212
+ if __name__ == '__main__':
213
+ import cv2, os