Spaces:
Runtime error
A newer version of the Streamlit SDK is available:
1.40.1
title: Proyecto Final
emoji: ⚡
colorFrom: red
colorTo: indigo
sdk: streamlit
sdk_version: 1.15.2
app_file: app.py
pinned: false
license: mit
Características
El modelo es utilizado para la clasificación de imágenes, a través de una red neuronal convolucional, y de acuerdo a la metodología de aprendizaje se tiene que el área de estudio relacionada es el aprendizaje supervisado, ya que para su entrenamiento se utilizaron datos etiquetados.
Construcción del modelo
Para la construcción del modelo, se utilizó el modelo “InceptionV3”, cargado con los pesos pre-entrenados en “ImageNet”, también se utilizó la técnica de “fine-tuning”, donde para transferir el aprendizaje se base en congelar todas las capas y entrenar solo las capas superiores con los datos de entrenamiento relacionados a nuestro fin.
Fuente de Datos
El set de datos utilizado para el entrenamiento y prueba del modelo es “Fashion MNIST”, el cual posee 70mil imágenes de resolución 28x28, cada imagen esta etiquetada con una categoría de ropa ('T-shirt/top','Trouser','Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot').
Propuesta de valor
Se desea que el modelo pueda predecir con una alta precisión la categoría de una prenda de ropa dada a través de una imagen, en cuanto a la propuesta comercial puede ser de gran utilidad para la clasificación automática de inventario para una tienda de ropa.
Predicciones
Para realizar una predicción se necesita cargar una imagen de alguna prenda de ropa (solo una prenda) puede ser de cualquier resolución, pero en los siguientes formatos: (jpg, png, jpeg), una vez cargada la imagen se desplegará un texto con la categoría obtenida por el modelo junto con la imagen de la prenda.
Monitoreo
Para las métricas utilizadas para medir el desempeño del modelo, se tiene la precisión, donde el modelo alcanzó un 83% de precisión en el conjunto de datos prueba.