Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,773 Bytes
64fd258 fd85691 3d490be 30a5000 64fd258 deebc0f 64fd258 091c199 deebc0f 091c199 110970f 8f2f81c f6365e6 110970f 64fd258 b733ae9 542b971 62d5a4d 542b971 73b3534 64fd258 73b3534 64fd258 deebc0f 482f37f deebc0f d5f6a4a 1600510 8f2f81c f6365e6 deebc0f 1600510 f6365e6 deebc0f 1600510 030cf22 77592d5 deebc0f 482f37f 030cf22 64fd258 9c74d86 64fd258 110970f 7d1539c 80aaa3d deebc0f 80aaa3d 73b3534 80aaa3d 64fd258 110970f 73b3534 110970f 73b3534 110970f 73b3534 55fc94b 73b3534 7d1539c 73b3534 030cf22 deebc0f 1840c1c deebc0f 73b3534 deebc0f 55fc94b deebc0f 73b3534 deebc0f 030cf22 73b3534 55fc94b 73b3534 110970f 64fd258 73b3534 64fd258 3aa678b 3d490be deebc0f a67e235 deebc0f 64fd258 deebc0f 64fd258 030cf22 62699b1 030cf22 62699b1 030cf22 62699b1 030cf22 62699b1 030cf22 1600510 d4a75aa deebc0f 1507f22 64fd258 73b3534 64fd258 bff13e4 a3ae4e4 110970f a3ae4e4 7d1539c deebc0f 1507f22 deebc0f 1507f22 55fc94b 1507f22 110970f 64fd258 1507f22 64fd258 deebc0f 030cf22 64fd258 9c74d86 80aaa3d 110970f 7d1539c 64fd258 73b3534 80aaa3d 64fd258 73b3534 64fd258 deebc0f b733ae9 deebc0f bff13e4 73b3534 64fd258 73b3534 64fd258 9c74d86 73b3534 9c74d86 f4356d9 07a3fc5 73b3534 07a3fc5 1600510 deebc0f 1600510 2b325d9 64fd258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
import os
from huggingface_hub import hf_hub_download
import torch
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download
#from gradio_imageslider import ImageSlider
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
MULTIMODAL_VITAL_LAYERS = [0, 1, 17, 18]
SINGLE_MODAL_VITAL_LAYERS = list(np.array([28, 53, 54, 56, 25]) - 19)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
#pipe.enable_lora()
pipe.to(DEVICE, dtype=torch.float16)
def get_examples():
case = [
[Image.open("metal.png"),"dragon.png", "a dragon, in 3d melting gold metal",0.9, 0.5, 0, 5, 28, 28, 0, False,False, 2, False, "text/image guided stylzation" ],
[Image.open("doll.png"),"anime.png", "anime illustration",0.9, 0.5, 0, 6, 28, 28, 0, False, False, 2, False,"text/image guided stylzation" ],
[Image.open("doll.png"), "raccoon.png", "raccoon, made of yarn",0.9, 0.5, 0, 4, 28, 28, 0, False, False, 2, False, "local subject edits" ],
[Image.open("cat.jpg"),"parrot.png", "a parrot", 0.9 ,0.5,2, 8,28, 28,0, False , False, 1, False, "local subject edits"],
[Image.open("cat.jpg"),"tiger.png", "a tiger", 0.9 ,0.5,0, 4,8, 8,789385745, False , False, 1, True, "local subject edits"],
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
]
return case
def reset_image_input():
return True
def reset_do_inversion(image_input):
if image_input:
return True
else:
return False
def resize_img(image, max_size=1024):
width, height = image.size
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.LANCZOS)
@torch.no_grad()
@spaces.GPU(duration=85)
def image2latent(image, latent_nudging_scalar = 1.15):
image = pipe.image_processor.preprocess(image, height=1024, width=1024,).type(pipe.vae.dtype).to("cuda")
latents = pipe.vae.encode(image)["latent_dist"].mean
latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
latents = latents * latent_nudging_scalar
height = pipe.default_sample_size * pipe.vae_scale_factor
width = pipe.default_sample_size * pipe.vae_scale_factor
num_channels_latents = pipe.transformer.config.in_channels // 4
height = 2 * (height // (pipe.vae_scale_factor * 2))
width = 2 * (width // (pipe.vae_scale_factor * 2))
latents = pipe._pack_latents(
latents=latents,
batch_size=1,
num_channels_latents=num_channels_latents,
height=height,
width=width
)
return latents
def check_hyper_flux_lora(enable_hyper_flux):
if enable_hyper_flux:
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
pipe.fuse_lora(lora_scale=0.125)
return 8, 8
else:
pipe.unfuse_lora()
return 28, 28
def convert_string_to_list(s):
return [int(x) for x in s.split(',') if x]
@spaces.GPU(duration=150)
def invert_and_edit(image,
source_prompt,
edit_prompt,
multimodal_layers,
single_layers,
num_inversion_steps,
num_inference_steps,
seed,
randomize_seed,
latent_nudging_scalar,
guidance_scale,
width = 1024,
height = 1024,
inverted_latent_list = None,
do_inversion = True,
image_input = False,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_input and (image is not None):
if do_inversion:
inverted_latent_list = pipe(
source_prompt,
height=1024,
width=1024,
guidance_scale=1,
output_type="pil",
num_inference_steps=num_inversion_steps,
max_sequence_length=512,
latents=image2latent(image, latent_nudging_scalar),
invert_image=True
)
do_inversion = False
else:
# move to gpu because of zero and gr.states
inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list]
num_inference_steps = num_inversion_steps
latents = inverted_latent_list[-1].tile(2, 1, 1)
guidance_scale = [1,3]
image_input = True
else:
latents = torch.randn(
(4096, 64),
generator=torch.Generator(0).manual_seed(0),
dtype=torch.float16,
device=DEVICE,
).tile(2, 1, 1)
guidance_scale = guidance_scale
image_input = False
try:
multimodal_layers = convert_string_to_list(multimodal_layers)
single_layers = convert_string_to_list(single_layers)
except:
multimodal_layers = MULTIMODAL_VITAL_LAYERS
single_layers = SINGLE_MODAL_VITAL_LAYERS
output = pipe(
[source_prompt, edit_prompt],
height=1024,
width=1024,
guidance_scale=guidance_scale,
output_type="pil",
num_inference_steps=num_inference_steps,
max_sequence_length=512,
latents=latents,
inverted_latent_list=inverted_latent_list,
mm_copy_blocks=multimodal_layers,
single_copy_blocks=single_layers,
).images
# move back to cpu because of zero and gr.states
if inverted_latent_list is not None:
inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list]
if image is None:
image = output[0]
return image, output[1], inverted_latent_list, do_inversion, image_input, seed
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
inverted_latents = gr.State()
do_inversion = gr.State(False)
image_input = gr.State(False)
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Stable Flow 🌊🖌️
### Edit real images with FLUX.1 [dev]
following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Free Image Editing* by Avrahami et al.](https://arxiv.org/pdf/2411.14430)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://omriavrahami.com/stable-flow/) [[arxiv](https://arxiv.org/pdf/2411.14430)]
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="pil"
)
source_prompt = gr.Text(
label="Source Prompt",
max_lines=1,
placeholder="describe the edited output",
)
edit_prompt = gr.Text(
label="Edit Prompt",
max_lines=1,
placeholder="describe the edited output",
)
with gr.Row():
multimodal_layers = gr.Text(
info = "MMDiT attention layers used for editing",
label="vital multimodal layers",
max_lines=1,
value="0, 1, 17, 18",
)
single_layers = gr.Text(
info = "DiT attention layers used editing",
label="vital single layers",
max_lines=1,
value="9, 34, 35, 37, 6",
)
with gr.Row():
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False)
run_button = gr.Button("Edit", variant="primary")
with gr.Column():
result = gr.Image(label="Result")
# with gr.Column():
# with gr.Group():
# result = ImageSlider(position=0.5)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="num inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
guidance_scale = gr.Slider(
label="guidance scale",
minimum=1,
maximum=25,
step=1,
value=3.5,
)
with gr.Row():
num_inversion_steps = gr.Slider(
label="num inversion steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
latent_nudging_scalar= gr.Slider(
label="latent nudging scalar",
minimum=1,
maximum=5,
step=0.01,
value=1.15,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
run_button.click(
fn=invert_and_edit,
inputs=[
input_image,
source_prompt,
edit_prompt,
multimodal_layers,
single_layers,
num_inversion_steps,
num_inference_steps,
seed,
randomize_seed,
latent_nudging_scalar,
guidance_scale,
width,
height,
inverted_latents,
do_inversion,
image_input
],
outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed],
)
# gr.Examples(
# examples=get_examples(),
# inputs=[input_image,result, prompt, num_inversion_steps, num_inference_steps, seed, randomize_seed, enable_hyper_flux ],
# outputs=[result],
# )
input_image.input(fn=reset_image_input,
outputs=[image_input]).then(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
source_prompt.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
num_inversion_steps.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
seed.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
enable_hyper_flux.change(
fn=check_hyper_flux_lora,
inputs=[enable_hyper_flux],
outputs=[num_inversion_steps, num_inference_steps]
)
if __name__ == "__main__":
demo.launch() |