Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import spaces | |
from PIL import Image | |
import os | |
from huggingface_hub import hf_hub_download | |
import torch | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import hf_hub_download | |
#from gradio_imageslider import ImageSlider | |
# Constants | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
import numpy as np | |
MULTIMODAL_VITAL_LAYERS = [0, 1, 17, 18] | |
SINGLE_MODAL_VITAL_LAYERS = list(np.array([28, 53, 54, 56, 25]) - 19) | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
pipe.fuse_lora(lora_scale=0.125) | |
#pipe.enable_lora() | |
pipe.to(DEVICE, dtype=torch.float16) | |
def get_examples(): | |
case = [ | |
[Image.open("metal.png"),"dragon.png", "a dragon, in 3d melting gold metal",0.9, 0.5, 0, 5, 28, 28, 0, False,False, 2, False, "text/image guided stylzation" ], | |
[Image.open("doll.png"),"anime.png", "anime illustration",0.9, 0.5, 0, 6, 28, 28, 0, False, False, 2, False,"text/image guided stylzation" ], | |
[Image.open("doll.png"), "raccoon.png", "raccoon, made of yarn",0.9, 0.5, 0, 4, 28, 28, 0, False, False, 2, False, "local subject edits" ], | |
[Image.open("cat.jpg"),"parrot.png", "a parrot", 0.9 ,0.5,2, 8,28, 28,0, False , False, 1, False, "local subject edits"], | |
[Image.open("cat.jpg"),"tiger.png", "a tiger", 0.9 ,0.5,0, 4,8, 8,789385745, False , False, 1, True, "local subject edits"], | |
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"], | |
] | |
return case | |
def reset_image_input(): | |
return True | |
def reset_do_inversion(image_input): | |
if image_input: | |
return True | |
else: | |
return False | |
def resize_img(image, max_size=1024): | |
width, height = image.size | |
scaling_factor = min(max_size / width, max_size / height) | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
return image.resize((new_width, new_height), Image.LANCZOS) | |
def image2latent(image, latent_nudging_scalar = 1.15): | |
image = pipe.image_processor.preprocess(image, height=1024, width=1024,).type(pipe.vae.dtype).to("cuda") | |
latents = pipe.vae.encode(image)["latent_dist"].mean | |
latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor | |
latents = latents * latent_nudging_scalar | |
height = pipe.default_sample_size * pipe.vae_scale_factor | |
width = pipe.default_sample_size * pipe.vae_scale_factor | |
num_channels_latents = pipe.transformer.config.in_channels // 4 | |
height = 2 * (height // (pipe.vae_scale_factor * 2)) | |
width = 2 * (width // (pipe.vae_scale_factor * 2)) | |
latents = pipe._pack_latents( | |
latents=latents, | |
batch_size=1, | |
num_channels_latents=num_channels_latents, | |
height=height, | |
width=width | |
) | |
return latents | |
def check_hyper_flux_lora(enable_hyper_flux): | |
if enable_hyper_flux: | |
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125) | |
pipe.fuse_lora(lora_scale=0.125) | |
return 8, 8 | |
else: | |
pipe.unfuse_lora() | |
return 28, 28 | |
def convert_string_to_list(s): | |
return [int(x) for x in s.split(',') if x] | |
def invert_and_edit(image, | |
source_prompt, | |
edit_prompt, | |
multimodal_layers, | |
single_layers, | |
num_inversion_steps, | |
num_inference_steps, | |
seed, | |
randomize_seed, | |
latent_nudging_scalar, | |
guidance_scale, | |
width = 1024, | |
height = 1024, | |
inverted_latent_list = None, | |
do_inversion = True, | |
image_input = False, | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if image_input and (image is not None): | |
if do_inversion: | |
inverted_latent_list = pipe( | |
source_prompt, | |
height=1024, | |
width=1024, | |
guidance_scale=1, | |
output_type="pil", | |
num_inference_steps=num_inversion_steps, | |
max_sequence_length=512, | |
latents=image2latent(image, latent_nudging_scalar), | |
invert_image=True | |
) | |
do_inversion = False | |
else: | |
# move to gpu because of zero and gr.states | |
inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list] | |
num_inference_steps = num_inversion_steps | |
latents = inverted_latent_list[-1].tile(2, 1, 1) | |
guidance_scale = [1,3] | |
image_input = True | |
else: | |
latents = torch.randn( | |
(4096, 64), | |
generator=torch.Generator(0).manual_seed(0), | |
dtype=torch.float16, | |
device=DEVICE, | |
).tile(2, 1, 1) | |
guidance_scale = guidance_scale | |
image_input = False | |
try: | |
multimodal_layers = convert_string_to_list(multimodal_layers) | |
single_layers = convert_string_to_list(single_layers) | |
except: | |
multimodal_layers = MULTIMODAL_VITAL_LAYERS | |
single_layers = SINGLE_MODAL_VITAL_LAYERS | |
output = pipe( | |
[source_prompt, edit_prompt], | |
height=1024, | |
width=1024, | |
guidance_scale=guidance_scale, | |
output_type="pil", | |
num_inference_steps=num_inference_steps, | |
max_sequence_length=512, | |
latents=latents, | |
inverted_latent_list=inverted_latent_list, | |
mm_copy_blocks=multimodal_layers, | |
single_copy_blocks=single_layers, | |
).images | |
# move back to cpu because of zero and gr.states | |
if inverted_latent_list is not None: | |
inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list] | |
if image is None: | |
image = output[0] | |
return image, output[1], inverted_latent_list, do_inversion, image_input, seed | |
# UI CSS | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 960px; | |
} | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=css) as demo: | |
inverted_latents = gr.State() | |
do_inversion = gr.State(False) | |
image_input = gr.State(False) | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# Stable Flow 🌊🖌️ | |
### Edit real images with FLUX.1 [dev] | |
following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Free Image Editing* by Avrahami et al.](https://arxiv.org/pdf/2411.14430) | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://omriavrahami.com/stable-flow/) [[arxiv](https://arxiv.org/pdf/2411.14430)] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image( | |
label="Input Image", | |
type="pil" | |
) | |
source_prompt = gr.Text( | |
label="Source Prompt", | |
max_lines=1, | |
placeholder="describe the edited output", | |
) | |
edit_prompt = gr.Text( | |
label="Edit Prompt", | |
max_lines=1, | |
placeholder="describe the edited output", | |
) | |
with gr.Row(): | |
multimodal_layers = gr.Text( | |
info = "MMDiT attention layers used for editing", | |
label="vital multimodal layers", | |
max_lines=1, | |
value="0, 1, 17, 18", | |
) | |
single_layers = gr.Text( | |
info = "DiT attention layers used editing", | |
label="vital single layers", | |
max_lines=1, | |
value="9, 34, 35, 37, 6", | |
) | |
with gr.Row(): | |
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False) | |
run_button = gr.Button("Edit", variant="primary") | |
with gr.Column(): | |
result = gr.Image(label="Result") | |
# with gr.Column(): | |
# with gr.Group(): | |
# result = ImageSlider(position=0.5) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="num inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=8, | |
) | |
guidance_scale = gr.Slider( | |
label="guidance scale", | |
minimum=1, | |
maximum=25, | |
step=1, | |
value=3.5, | |
) | |
with gr.Row(): | |
num_inversion_steps = gr.Slider( | |
label="num inversion steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
latent_nudging_scalar= gr.Slider( | |
label="latent nudging scalar", | |
minimum=1, | |
maximum=5, | |
step=0.01, | |
value=1.15, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
run_button.click( | |
fn=invert_and_edit, | |
inputs=[ | |
input_image, | |
source_prompt, | |
edit_prompt, | |
multimodal_layers, | |
single_layers, | |
num_inversion_steps, | |
num_inference_steps, | |
seed, | |
randomize_seed, | |
latent_nudging_scalar, | |
guidance_scale, | |
width, | |
height, | |
inverted_latents, | |
do_inversion, | |
image_input | |
], | |
outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed], | |
) | |
# gr.Examples( | |
# examples=get_examples(), | |
# inputs=[input_image,result, prompt, num_inversion_steps, num_inference_steps, seed, randomize_seed, enable_hyper_flux ], | |
# outputs=[result], | |
# ) | |
input_image.input(fn=reset_image_input, | |
outputs=[image_input]).then( | |
fn=reset_do_inversion, | |
inputs = [image_input], | |
outputs=[do_inversion] | |
) | |
source_prompt.change( | |
fn=reset_do_inversion, | |
inputs = [image_input], | |
outputs=[do_inversion] | |
) | |
num_inversion_steps.change( | |
fn=reset_do_inversion, | |
inputs = [image_input], | |
outputs=[do_inversion] | |
) | |
seed.change( | |
fn=reset_do_inversion, | |
inputs = [image_input], | |
outputs=[do_inversion] | |
) | |
enable_hyper_flux.change( | |
fn=check_hyper_flux_lora, | |
inputs=[enable_hyper_flux], | |
outputs=[num_inversion_steps, num_inference_steps] | |
) | |
if __name__ == "__main__": | |
demo.launch() |