Stable-Flow / app.py
linoyts's picture
linoyts HF staff
Update app.py
7d1539c verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
import os
from huggingface_hub import hf_hub_download
import torch
from diffusers import DiffusionPipeline
from huggingface_hub import hf_hub_download
#from gradio_imageslider import ImageSlider
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
import numpy as np
MULTIMODAL_VITAL_LAYERS = [0, 1, 17, 18]
SINGLE_MODAL_VITAL_LAYERS = list(np.array([28, 53, 54, 56, 25]) - 19)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
#pipe.enable_lora()
pipe.to(DEVICE, dtype=torch.float16)
def get_examples():
case = [
[Image.open("metal.png"),"dragon.png", "a dragon, in 3d melting gold metal",0.9, 0.5, 0, 5, 28, 28, 0, False,False, 2, False, "text/image guided stylzation" ],
[Image.open("doll.png"),"anime.png", "anime illustration",0.9, 0.5, 0, 6, 28, 28, 0, False, False, 2, False,"text/image guided stylzation" ],
[Image.open("doll.png"), "raccoon.png", "raccoon, made of yarn",0.9, 0.5, 0, 4, 28, 28, 0, False, False, 2, False, "local subject edits" ],
[Image.open("cat.jpg"),"parrot.png", "a parrot", 0.9 ,0.5,2, 8,28, 28,0, False , False, 1, False, "local subject edits"],
[Image.open("cat.jpg"),"tiger.png", "a tiger", 0.9 ,0.5,0, 4,8, 8,789385745, False , False, 1, True, "local subject edits"],
[Image.open("metal.png"), "dragon.png","a dragon, in 3d melting gold metal",0.9, 0.5, 0, 4, 8, 8, 789385745, False,True, 2, True , "text/image guided stylzation"],
]
return case
def reset_image_input():
return True
def reset_do_inversion(image_input):
if image_input:
return True
else:
return False
def resize_img(image, max_size=1024):
width, height = image.size
scaling_factor = min(max_size / width, max_size / height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.LANCZOS)
@torch.no_grad()
@spaces.GPU(duration=85)
def image2latent(image, latent_nudging_scalar = 1.15):
image = pipe.image_processor.preprocess(image, height=1024, width=1024,).type(pipe.vae.dtype).to("cuda")
latents = pipe.vae.encode(image)["latent_dist"].mean
latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
latents = latents * latent_nudging_scalar
height = pipe.default_sample_size * pipe.vae_scale_factor
width = pipe.default_sample_size * pipe.vae_scale_factor
num_channels_latents = pipe.transformer.config.in_channels // 4
height = 2 * (height // (pipe.vae_scale_factor * 2))
width = 2 * (width // (pipe.vae_scale_factor * 2))
latents = pipe._pack_latents(
latents=latents,
batch_size=1,
num_channels_latents=num_channels_latents,
height=height,
width=width
)
return latents
def check_hyper_flux_lora(enable_hyper_flux):
if enable_hyper_flux:
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), lora_scale=0.125)
pipe.fuse_lora(lora_scale=0.125)
return 8, 8
else:
pipe.unfuse_lora()
return 28, 28
def convert_string_to_list(s):
return [int(x) for x in s.split(',') if x]
@spaces.GPU(duration=150)
def invert_and_edit(image,
source_prompt,
edit_prompt,
multimodal_layers,
single_layers,
num_inversion_steps,
num_inference_steps,
seed,
randomize_seed,
latent_nudging_scalar,
guidance_scale,
width = 1024,
height = 1024,
inverted_latent_list = None,
do_inversion = True,
image_input = False,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if image_input and (image is not None):
if do_inversion:
inverted_latent_list = pipe(
source_prompt,
height=1024,
width=1024,
guidance_scale=1,
output_type="pil",
num_inference_steps=num_inversion_steps,
max_sequence_length=512,
latents=image2latent(image, latent_nudging_scalar),
invert_image=True
)
do_inversion = False
else:
# move to gpu because of zero and gr.states
inverted_latent_list = [tensor.to(DEVICE) for tensor in inverted_latent_list]
num_inference_steps = num_inversion_steps
latents = inverted_latent_list[-1].tile(2, 1, 1)
guidance_scale = [1,3]
image_input = True
else:
latents = torch.randn(
(4096, 64),
generator=torch.Generator(0).manual_seed(0),
dtype=torch.float16,
device=DEVICE,
).tile(2, 1, 1)
guidance_scale = guidance_scale
image_input = False
try:
multimodal_layers = convert_string_to_list(multimodal_layers)
single_layers = convert_string_to_list(single_layers)
except:
multimodal_layers = MULTIMODAL_VITAL_LAYERS
single_layers = SINGLE_MODAL_VITAL_LAYERS
output = pipe(
[source_prompt, edit_prompt],
height=1024,
width=1024,
guidance_scale=guidance_scale,
output_type="pil",
num_inference_steps=num_inference_steps,
max_sequence_length=512,
latents=latents,
inverted_latent_list=inverted_latent_list,
mm_copy_blocks=multimodal_layers,
single_copy_blocks=single_layers,
).images
# move back to cpu because of zero and gr.states
if inverted_latent_list is not None:
inverted_latent_list = [tensor.cpu() for tensor in inverted_latent_list]
if image is None:
image = output[0]
return image, output[1], inverted_latent_list, do_inversion, image_input, seed
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
inverted_latents = gr.State()
do_inversion = gr.State(False)
image_input = gr.State(False)
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Stable Flow 🌊🖌️
### Edit real images with FLUX.1 [dev]
following the algorithm proposed in [*Stable Flow: Vital Layers for Training-Free Image Editing* by Avrahami et al.](https://arxiv.org/pdf/2411.14430)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[project page](https://omriavrahami.com/stable-flow/) [[arxiv](https://arxiv.org/pdf/2411.14430)]
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type="pil"
)
source_prompt = gr.Text(
label="Source Prompt",
max_lines=1,
placeholder="describe the edited output",
)
edit_prompt = gr.Text(
label="Edit Prompt",
max_lines=1,
placeholder="describe the edited output",
)
with gr.Row():
multimodal_layers = gr.Text(
info = "MMDiT attention layers used for editing",
label="vital multimodal layers",
max_lines=1,
value="0, 1, 17, 18",
)
single_layers = gr.Text(
info = "DiT attention layers used editing",
label="vital single layers",
max_lines=1,
value="9, 34, 35, 37, 6",
)
with gr.Row():
enable_hyper_flux = gr.Checkbox(label="8-step LoRA", value=False, info="may reduce edit quality", visible=False)
run_button = gr.Button("Edit", variant="primary")
with gr.Column():
result = gr.Image(label="Result")
# with gr.Column():
# with gr.Group():
# result = ImageSlider(position=0.5)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="num inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
guidance_scale = gr.Slider(
label="guidance scale",
minimum=1,
maximum=25,
step=1,
value=3.5,
)
with gr.Row():
num_inversion_steps = gr.Slider(
label="num inversion steps",
minimum=1,
maximum=50,
step=1,
value=25,
)
latent_nudging_scalar= gr.Slider(
label="latent nudging scalar",
minimum=1,
maximum=5,
step=0.01,
value=1.15,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
run_button.click(
fn=invert_and_edit,
inputs=[
input_image,
source_prompt,
edit_prompt,
multimodal_layers,
single_layers,
num_inversion_steps,
num_inference_steps,
seed,
randomize_seed,
latent_nudging_scalar,
guidance_scale,
width,
height,
inverted_latents,
do_inversion,
image_input
],
outputs=[input_image, result, inverted_latents, do_inversion, image_input, seed],
)
# gr.Examples(
# examples=get_examples(),
# inputs=[input_image,result, prompt, num_inversion_steps, num_inference_steps, seed, randomize_seed, enable_hyper_flux ],
# outputs=[result],
# )
input_image.input(fn=reset_image_input,
outputs=[image_input]).then(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
source_prompt.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
num_inversion_steps.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
seed.change(
fn=reset_do_inversion,
inputs = [image_input],
outputs=[do_inversion]
)
enable_hyper_flux.change(
fn=check_hyper_flux_lora,
inputs=[enable_hyper_flux],
outputs=[num_inversion_steps, num_inference_steps]
)
if __name__ == "__main__":
demo.launch()