anime_controlnet / src /convert_sd.py
1lint
init commit
6230dda
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.
# Originally written by jachiam at https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05
# modified by 1lint to support controlnet conversion
import argparse
import torch
from safetensors import safe_open
from safetensors.torch import save_file
from pathlib import Path
# =================#
# UNet Conversion #
# =================#
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def convert_unet_state_dict(unet_state_dict, is_controlnet=True):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
conversion_map = unet_conversion_map
if is_controlnet:
# remove output blocks from conversion mapping since controlnet doesn't have them
conversion_map = unet_conversion_map[:6]
for k, v in mapping.items():
# convert controlnet zero convolution keys
if "controlnet_down_blocks" in v:
new_key = v.replace("controlnet_down_blocks", "zero_convs")
new_key = ".0.".join(new_key.rsplit(".", 1))
mapping[k] = new_key
mapping["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
mapping["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
if "controlnet_cond_embedding.conv_in.weight" in mapping:
mapping[
"controlnet_cond_embedding.conv_in.weight"
] = "input_hint_block.0.weight"
mapping[
"controlnet_cond_embedding.conv_in.bias"
] = "input_hint_block.0.bias"
for i in range(6):
mapping[
f"controlnet_cond_embedding.blocks.{i}.weight"
] = f"input_hint_block.{2*(i+1)}.weight"
mapping[
f"controlnet_cond_embedding.blocks.{i}.bias"
] = f"input_hint_block.{2*(i+1)}.bias"
mapping[
"controlnet_cond_embedding.conv_out.weight"
] = "input_hint_block.14.weight"
mapping[
"controlnet_cond_embedding.conv_out.bias"
] = "input_hint_block.14.bias"
for sd_name, hf_name in conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
def load_state_dict(state_dict_path):
file_ext = state_dict_path.rsplit(".", 1)[-1]
if file_ext == "safetensors":
state_dict = {}
with safe_open(state_dict_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
else:
state_dict = torch.load(state_dict_path, map_location="cpu")
return state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
default=None,
type=str,
required=True,
help="Path to the model to convert.",
)
parser.add_argument(
"--checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the output model.",
)
parser.add_argument(
"--half", action="store_true", help="Save weights in half precision."
)
parser.add_argument(
"--is_controlnet",
action="store_true",
help="Whether conversion is for controlnet or standard sd unet",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to save state dict in safetensors format",
)
args = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
unet_state_dict = load_state_dict(args.model_path)
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(
unet_state_dict, is_controlnet=args.is_controlnet
)
if args.half:
unet_state_dict = {k: v.half() for k, v in unet_state_dict.items()}
Path(args.checkpoint_path).parent.mkdir(parents=True, exist_ok=True)
if args.to_safetensors:
save_file(unet_state_dict, args.checkpoint_path)
else:
torch.save(unet_state_dict, args.checkpoint_path)
print(
f"Converted {Path(args.model_path)} to original SD format at {Path(args.checkpoint_path)}"
)