Spaces:
Runtime error
Runtime error
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint. | |
# *Only* converts the UNet, VAE, and Text Encoder. | |
# Does not convert optimizer state or any other thing. | |
# Originally written by jachiam at https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05 | |
# modified by 1lint to support controlnet conversion | |
import argparse | |
import torch | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
from pathlib import Path | |
# =================# | |
# UNet Conversion # | |
# =================# | |
unet_conversion_map = [ | |
# (stable-diffusion, HF Diffusers) | |
("time_embed.0.weight", "time_embedding.linear_1.weight"), | |
("time_embed.0.bias", "time_embedding.linear_1.bias"), | |
("time_embed.2.weight", "time_embedding.linear_2.weight"), | |
("time_embed.2.bias", "time_embedding.linear_2.bias"), | |
("input_blocks.0.0.weight", "conv_in.weight"), | |
("input_blocks.0.0.bias", "conv_in.bias"), | |
("out.0.weight", "conv_norm_out.weight"), | |
("out.0.bias", "conv_norm_out.bias"), | |
("out.2.weight", "conv_out.weight"), | |
("out.2.bias", "conv_out.bias"), | |
] | |
unet_conversion_map_resnet = [ | |
# (stable-diffusion, HF Diffusers) | |
("in_layers.0", "norm1"), | |
("in_layers.2", "conv1"), | |
("out_layers.0", "norm2"), | |
("out_layers.3", "conv2"), | |
("emb_layers.1", "time_emb_proj"), | |
("skip_connection", "conv_shortcut"), | |
] | |
unet_conversion_map_layer = [] | |
# hardcoded number of downblocks and resnets/attentions... | |
# would need smarter logic for other networks. | |
for i in range(4): | |
# loop over downblocks/upblocks | |
for j in range(2): | |
# loop over resnets/attentions for downblocks | |
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}." | |
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0." | |
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) | |
if i < 3: | |
# no attention layers in down_blocks.3 | |
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}." | |
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1." | |
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) | |
for j in range(3): | |
# loop over resnets/attentions for upblocks | |
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}." | |
sd_up_res_prefix = f"output_blocks.{3*i + j}.0." | |
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) | |
if i > 0: | |
# no attention layers in up_blocks.0 | |
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}." | |
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1." | |
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) | |
if i < 3: | |
# no downsample in down_blocks.3 | |
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv." | |
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op." | |
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) | |
# no upsample in up_blocks.3 | |
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0." | |
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." | |
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) | |
hf_mid_atn_prefix = "mid_block.attentions.0." | |
sd_mid_atn_prefix = "middle_block.1." | |
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) | |
for j in range(2): | |
hf_mid_res_prefix = f"mid_block.resnets.{j}." | |
sd_mid_res_prefix = f"middle_block.{2*j}." | |
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) | |
def convert_unet_state_dict(unet_state_dict, is_controlnet=True): | |
# buyer beware: this is a *brittle* function, | |
# and correct output requires that all of these pieces interact in | |
# the exact order in which I have arranged them. | |
mapping = {k: k for k in unet_state_dict.keys()} | |
conversion_map = unet_conversion_map | |
if is_controlnet: | |
# remove output blocks from conversion mapping since controlnet doesn't have them | |
conversion_map = unet_conversion_map[:6] | |
for k, v in mapping.items(): | |
# convert controlnet zero convolution keys | |
if "controlnet_down_blocks" in v: | |
new_key = v.replace("controlnet_down_blocks", "zero_convs") | |
new_key = ".0.".join(new_key.rsplit(".", 1)) | |
mapping[k] = new_key | |
mapping["controlnet_mid_block.bias"] = "middle_block_out.0.bias" | |
mapping["controlnet_mid_block.weight"] = "middle_block_out.0.weight" | |
if "controlnet_cond_embedding.conv_in.weight" in mapping: | |
mapping[ | |
"controlnet_cond_embedding.conv_in.weight" | |
] = "input_hint_block.0.weight" | |
mapping[ | |
"controlnet_cond_embedding.conv_in.bias" | |
] = "input_hint_block.0.bias" | |
for i in range(6): | |
mapping[ | |
f"controlnet_cond_embedding.blocks.{i}.weight" | |
] = f"input_hint_block.{2*(i+1)}.weight" | |
mapping[ | |
f"controlnet_cond_embedding.blocks.{i}.bias" | |
] = f"input_hint_block.{2*(i+1)}.bias" | |
mapping[ | |
"controlnet_cond_embedding.conv_out.weight" | |
] = "input_hint_block.14.weight" | |
mapping[ | |
"controlnet_cond_embedding.conv_out.bias" | |
] = "input_hint_block.14.bias" | |
for sd_name, hf_name in conversion_map: | |
mapping[hf_name] = sd_name | |
for k, v in mapping.items(): | |
if "resnets" in k: | |
for sd_part, hf_part in unet_conversion_map_resnet: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
for k, v in mapping.items(): | |
for sd_part, hf_part in unet_conversion_map_layer: | |
v = v.replace(hf_part, sd_part) | |
mapping[k] = v | |
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()} | |
return new_state_dict | |
def load_state_dict(state_dict_path): | |
file_ext = state_dict_path.rsplit(".", 1)[-1] | |
if file_ext == "safetensors": | |
state_dict = {} | |
with safe_open(state_dict_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(state_dict_path, map_location="cpu") | |
return state_dict | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the model to convert.", | |
) | |
parser.add_argument( | |
"--checkpoint_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to the output model.", | |
) | |
parser.add_argument( | |
"--half", action="store_true", help="Save weights in half precision." | |
) | |
parser.add_argument( | |
"--is_controlnet", | |
action="store_true", | |
help="Whether conversion is for controlnet or standard sd unet", | |
) | |
parser.add_argument( | |
"--to_safetensors", | |
action="store_true", | |
help="Whether to save state dict in safetensors format", | |
) | |
args = parser.parse_args() | |
assert args.model_path is not None, "Must provide a model path!" | |
assert args.checkpoint_path is not None, "Must provide a checkpoint path!" | |
unet_state_dict = load_state_dict(args.model_path) | |
# Convert the UNet model | |
unet_state_dict = convert_unet_state_dict( | |
unet_state_dict, is_controlnet=args.is_controlnet | |
) | |
if args.half: | |
unet_state_dict = {k: v.half() for k, v in unet_state_dict.items()} | |
Path(args.checkpoint_path).parent.mkdir(parents=True, exist_ok=True) | |
if args.to_safetensors: | |
save_file(unet_state_dict, args.checkpoint_path) | |
else: | |
torch.save(unet_state_dict, args.checkpoint_path) | |
print( | |
f"Converted {Path(args.model_path)} to original SD format at {Path(args.checkpoint_path)}" | |
) | |