File size: 15,712 Bytes
937bfd0
e9af19b
8cb84e3
991b396
 
6cc3c63
991b396
 
 
 
 
 
 
 
 
 
750cfac
 
6cc3c63
991b396
5eeed25
de8e581
991b396
 
 
de8e581
991b396
e513fba
991b396
 
e513fba
991b396
 
6cc3c63
991b396
 
491cb22
991b396
 
 
 
 
 
 
6a4bbaf
991b396
6a4bbaf
991b396
 
 
 
 
 
 
 
 
 
5eeed25
991b396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9af19b
991b396
 
 
 
 
 
 
 
e9af19b
991b396
6a4bbaf
991b396
7d9c5c9
ac6db00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
991b396
ac6db00
 
991b396
ac6db00
 
991b396
ac6db00
 
 
991b396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9af19b
991b396
 
 
 
 
e9af19b
991b396
 
 
7d9c5c9
991b396
 
e9af19b
 
991b396
 
491cb22
991b396
 
 
 
e9af19b
991b396
 
 
6cc3c63
991b396
 
 
 
 
 
 
 
 
 
 
 
6cc3c63
991b396
 
 
 
 
6cc3c63
991b396
 
 
 
 
 
 
 
 
 
 
 
 
 
6cc3c63
991b396
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import spaces
import gradio as gr
import torch
import numpy as np
import pandas as pd
import random
import io
import imageio
import os
import tempfile
import atexit
import glob
import csv
from datetime import datetime
import json

from rdkit import Chem
from rdkit.Chem import Draw

from evaluator import Evaluator
from loader import load_graph_decoder

# Load the CSV data
known_labels = pd.read_csv('data/known_labels.csv')
knwon_smiles = pd.read_csv('data/known_polymers.csv')

all_properties = ['CH4', 'CO2', 'H2', 'N2', 'O2']

# Initialize evaluators
evaluators = {prop: Evaluator(f'evaluators/{prop}.joblib', prop) for prop in all_properties}

# Get min and max values for each property
property_ranges = {prop: (known_labels[prop].min(), known_labels[prop].max()) for prop in all_properties}

# Create a temporary directory for GIFs
temp_dir = tempfile.mkdtemp(prefix="polymer_gifs_")

def cleanup_temp_files():
    """Clean up temporary GIF files on exit."""
    for file in glob.glob(os.path.join(temp_dir, "*.gif")):
        try:
            os.remove(file)
        except Exception as e:
            print(f"Error deleting {file}: {e}")
    try:
        os.rmdir(temp_dir)
    except Exception as e:
        print(f"Error deleting temporary directory {temp_dir}: {e}")

# Register the cleanup function to be called on exit
atexit.register(cleanup_temp_files)

def random_properties():
    return known_labels[all_properties].sample(1).values.tolist()[0]

def load_model(model_choice):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = load_graph_decoder(path=model_choice)
    return (model, device)

# Create a flagged folder if it doesn't exist
flagged_folder = "flagged"
os.makedirs(flagged_folder, exist_ok=True)

def save_interesting_log(smiles, properties, suggested_properties):
    """Save interesting polymer data to a CSV file."""
    log_file = os.path.join(flagged_folder, "log.csv")
    file_exists = os.path.isfile(log_file)
    
    with open(log_file, 'a', newline='') as csvfile:
        fieldnames = ['timestamp', 'smiles'] + all_properties + [f'suggested_{prop}' for prop in all_properties]
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        
        if not file_exists:
            writer.writeheader()
        
        log_data = {
            'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
            'smiles': smiles,
            **{prop: value for prop, value in zip(all_properties, properties)},
            **{f'suggested_{prop}': value for prop, value in suggested_properties.items()}
        }
        writer.writerow(log_data)

@spaces.GPU
def generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
    model, device = model_state
    
    properties = [CH4, CO2, H2, N2, O2]
    
    def is_nan_like(x):
        return x == 0 or x == '' or (isinstance(x, float) and np.isnan(x))
    
    properties = [None if is_nan_like(prop) else prop for prop in properties]
    
    nan_message = "The following gas properties were treated as NaN: "
    nan_gases = [gas for gas, prop in zip(all_properties, properties) if prop is None]
    nan_message += ", ".join(nan_gases) if nan_gases else "None"

    num_nodes = None if num_nodes == 0 else num_nodes
    
    for _ in range(repeating_time):
        print('repeat times:', _)
        try:
            model.to(device)
            generated_molecule, img_list = model.generate(properties, guide_scale=guidance_scale, num_nodes=num_nodes, number_chain_steps=num_chain_steps)
            # Create GIF if img_list is available
            gif_path = None
            if img_list and len(img_list) > 0:
                imgs = [np.array(pil_img) for pil_img in img_list]
                imgs.extend([imgs[-1]] * 10)
                gif_path = os.path.join(temp_dir, f"polymer_gen_{random.randint(0, 999999)}.gif")
                imageio.mimsave(gif_path, imgs, format='GIF', fps=fps, loop=0)
            
            if generated_molecule is not None:
                mol = Chem.MolFromSmiles(generated_molecule)
                if mol is not None:
                    standardized_smiles = Chem.MolToSmiles(mol, isomericSmiles=True)
                    is_novel = standardized_smiles not in knwon_smiles['SMILES'].values
                    novelty_status = "Novel (Not in Labeled Set)" if is_novel else "Not Novel (Exists in Labeled Set)"
                    img = Draw.MolToImage(mol)
                    
                    # Evaluate the generated molecule
                    suggested_properties = {}
                    for prop, evaluator in evaluators.items():
                        suggested_properties[prop] = evaluator([standardized_smiles])[0]
                    
                    suggested_properties_text = "\n".join([f"**Suggested {prop}:** {value:.2f}" for prop, value in suggested_properties.items()])
                    
                    return (
                        f"**Generated polymer SMILES:** `{standardized_smiles}`\n\n"
                        f"**{nan_message}**\n\n"
                        f"**{novelty_status}**\n\n"
                        f"**Suggested Properties:**\n{suggested_properties_text}",
                        img,
                        gif_path,
                        properties,  # Add this
                        suggested_properties  # Add this
                    )
            else:
                return (
                    f"**Generation failed:** Could not generate a valid molecule.\n\n**{nan_message}**",
                    None,
                    gif_path,
                    properties,
                    None,
                )
        except Exception as e:
            print(f"Error in generation: {e}")
            continue
    
    return f"**Generation failed:** Could not generate a valid molecule after {repeating_time} attempts.\n\n**{nan_message}**", None, None

def set_random_properties():
    return random_properties()

# Create a mapping of internal names to display names
model_name_mapping = {
    "model_all": "Graph DiT (trained on labeled + unlabeled)",
    "model_labeled": "Graph DiT (trained on labeled)"
}

def numpy_to_python(obj):
    if isinstance(obj, np.integer):
        return int(obj)
    elif isinstance(obj, np.floating):
        return float(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, list):
        return [numpy_to_python(item) for item in obj]
    elif isinstance(obj, dict):
        return {k: numpy_to_python(v) for k, v in obj.items()}
    else:
        return obj
        
def on_generate(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps):
    result = generate_graph(CH4, CO2, H2, N2, O2, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps)
    # Check if the generation was successful
    if result[0].startswith("**Generated polymer SMILES:**"):
        smiles = result[0].split("**Generated polymer SMILES:** `")[1].split("`")[0]
        properties = json.dumps(numpy_to_python(result[3]))
        suggested_properties = json.dumps(numpy_to_python(result[4]))
        # Return the result with an enabled feedback button
        return [*result[:3], smiles, properties, suggested_properties, gr.Button(interactive=True)]
    else:
        # Return the result with a disabled feedback button
        return [*result[:3], "", "[]", "[]", gr.Button(interactive=False)]

def process_feedback(checkbox_value, smiles, properties, suggested_properties):
    if checkbox_value:
        # Check if properties and suggested_properties are already Python objects
        if isinstance(properties, str):
            properties = json.loads(properties)
        if isinstance(suggested_properties, str):
            suggested_properties = json.loads(suggested_properties)
        
        save_interesting_log(smiles, properties, suggested_properties)
        return gr.Textbox(value="Thank you for your feedback! This polymer has been saved to our interesting polymers log.", visible=True)
    else:
        return gr.Textbox(value="Thank you for your feedback!", visible=True)

# ADD THIS FUNCTION
def reset_feedback_button():
    return gr.Button(interactive=False)

# Create the Gradio interface using Blocks
with gr.Blocks(title="Polymer Design with GraphDiT") as iface:
    # Navigation Bar
    with gr.Row(elem_id="navbar"):
        gr.Markdown("""
        <div style="text-align: center;">
            <h1>πŸ”—πŸ”¬ Polymer Design with GraphDiT</h1>
            <div style="display: flex; gap: 20px; justify-content: center; align-items: center; margin-top: 10px;">
                <a href="https://github.com/liugangcode/Graph-DiT" target="_blank" style="display: flex; align-items: center; gap: 5px; text-decoration: none; color: inherit;">
                    <img src="https://img.icons8.com/ios-glyphs/30/000000/github.png" alt="GitHub" />
                    <span>View Code</span>
                </a>
                <a href="https://arxiv.org/abs/2401.13858" target="_blank" style="text-decoration: none; color: inherit;">
                    πŸ“„ View Paper
                </a>
            </div>
        </div>
        """)

    # Main Description
    gr.Markdown("""
    ## Introduction
    Input the desired gas barrier properties for CHβ‚„, COβ‚‚, Hβ‚‚, Nβ‚‚, and Oβ‚‚ to generate novel polymer structures. The results are visualized as molecular graphs and represented by SMILES strings if they are successfully generated. Note: Gas barrier values set to 0 will be treated as `NaN` (unconditionally). If the generation fails, please retry or increase the number of repetition attempts.
    """)

    # Model Selection
    model_choice = gr.Radio(
        choices=list(model_name_mapping.values()),
        label="Model Zoo",
        # value="Graph DiT (trained on labeled + unlabeled)"
        value="Graph DiT (trained on labeled)"
    )

    # Model Description Accordion
    with gr.Accordion("πŸ” Model Description", open=False):
        gr.Markdown("""
        ### GraphDiT: Graph Diffusion Transformer
        GraphDiT is a graph diffusion model designed for targeted molecular generation. It employs a conditional diffusion process to iteratively refine molecular structures based on user-specified properties.
        We have collected a labeled polymer database for gas permeability from [Membrane Database](https://research.csiro.au/virtualscreening/membrane-database-polymer-gas-separation-membranes/). Additionally, we utilize unlabeled polymer structures from [PolyInfo](https://polymer.nims.go.jp/).
        The gas permeability ranges from 0 to over ten thousand, with only hundreds of labeled data points, making this task particularly challenging.
        We are actively working on improving the model. We welcome any feedback regarding model usage or suggestions for improvement.
        #### Currently, we have two variants of Graph DiT:
        - **Graph DiT (trained on labeled + unlabeled)**: This model uses both labeled and unlabeled data for training, potentially leading to more diverse/novel polymer generation.
        - **Graph DiT (trained on labeled)**: This model is trained exclusively on labeled data, which may result in higher validity but potentially less diverse/novel outputs.
        """)

    # Citation Accordion
    with gr.Accordion("πŸ“„ Citation", open=False):
        gr.Markdown("""
        If you use this model or interface useful, please cite the following paper:
        ```bibtex
        @article{graphdit2024,
          title={Graph Diffusion Transformers for Multi-Conditional Molecular Generation},
          author={Liu, Gang and Xu, Jiaxin and Luo, Tengfei and Jiang, Meng},
          journal={NeurIPS},
          year={2024},
        }
        ```
        """)

    model_state = gr.State(lambda: load_model("model_labeled"))

    with gr.Row():
        CH4_input = gr.Slider(0, property_ranges['CH4'][1], value=2.5, label=f"CHβ‚„ (Barrier) [0-{property_ranges['CH4'][1]:.1f}]")
        CO2_input = gr.Slider(0, property_ranges['CO2'][1], value=15.4, label=f"COβ‚‚ (Barrier) [0-{property_ranges['CO2'][1]:.1f}]")
        H2_input = gr.Slider(0, property_ranges['H2'][1], value=21.0, label=f"Hβ‚‚ (Barrier) [0-{property_ranges['H2'][1]:.1f}]")
        N2_input = gr.Slider(0, property_ranges['N2'][1], value=1.5, label=f"Nβ‚‚ (Barrier) [0-{property_ranges['N2'][1]:.1f}]")
        O2_input = gr.Slider(0, property_ranges['O2'][1], value=2.8, label=f"Oβ‚‚ (Barrier) [0-{property_ranges['O2'][1]:.1f}]")

    with gr.Row():
        guidance_scale = gr.Slider(1, 3, value=2, label="Guidance Scale from Properties")
        num_nodes = gr.Slider(0, 50, step=1, value=0, label="Number of Nodes (0 for Random, Larger Graphs Take More Time)")
        repeating_time = gr.Slider(1, 10, step=1, value=5, label="Repetition Until Success")
        num_chain_steps = gr.Slider(0, 499, step=1, value=50, label="Number of Diffusion Steps to Visualize (Larger Numbers Take More Time)")
        fps = gr.Slider(0.25, 10, step=0.25, value=5, label="Frames Per Second")

    with gr.Row():
        random_btn = gr.Button("πŸ”€ Randomize Properties (from Labeled Data)")
        generate_btn = gr.Button("πŸš€ Generate Polymer")

    with gr.Row():
        result_text = gr.Textbox(label="πŸ“ Generation Result")
        result_image = gr.Image(label="Final Molecule Visualization", type="pil")
        result_gif = gr.Image(label="Generation Process Visualization", type="filepath", format="gif")

    with gr.Row() as feedback_row:
        feedback_btn = gr.Button("🌟 I think this polymer is interesting!", visible=True, interactive=False)
        feedback_result = gr.Textbox(label="Feedback Result", visible=False)
    
    # Add model switching functionality
    def switch_model(choice):
        # Convert display name back to internal name
        internal_name = next(key for key, value in model_name_mapping.items() if value == choice)
        return load_model(internal_name)

    model_choice.change(switch_model, inputs=[model_choice], outputs=[model_state])

    # Hidden components to store generation data
    hidden_smiles = gr.Textbox(visible=False)
    hidden_properties = gr.JSON(visible=False)
    hidden_suggested_properties = gr.JSON(visible=False)
    
    # Set up event handlers
    random_btn.click(
        set_random_properties,
        outputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input]
    )

    generate_btn.click(
        on_generate,
        inputs=[CH4_input, CO2_input, H2_input, N2_input, O2_input, guidance_scale, num_nodes, repeating_time, model_state, num_chain_steps, fps],
        outputs=[result_text, result_image, result_gif, hidden_smiles, hidden_properties, hidden_suggested_properties, feedback_btn]
    )

    feedback_btn.click(
        process_feedback,
        inputs=[gr.Checkbox(value=True, visible=False), hidden_smiles, hidden_properties, hidden_suggested_properties],
        outputs=[feedback_result]
    ).then(
        lambda: gr.Button(interactive=False),
        outputs=[feedback_btn]
    )
    
    CH4_input.change(reset_feedback_button, outputs=[feedback_btn])
    CO2_input.change(reset_feedback_button, outputs=[feedback_btn])
    H2_input.change(reset_feedback_button, outputs=[feedback_btn])
    N2_input.change(reset_feedback_button, outputs=[feedback_btn])
    O2_input.change(reset_feedback_button, outputs=[feedback_btn])
    random_btn.click(reset_feedback_button, outputs=[feedback_btn])

# Launch the interface
if __name__ == "__main__":
    # iface.launch(share=True)
    iface.launch(share=False)