File size: 52,555 Bytes
abca9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys

import numpy as np
from unlimiformer import Unlimiformer
from random_training_unlimiformer import RandomTrainingUnlimiformer

import nltk

# we import the logging frameworks before any other import to make sure all monkey patching for the logging are active
# from sled import SledConfig

import wandb
import torch

sys.path.insert(0, os.path.dirname(__file__))  # seq2seq package path
sys.path.insert(0, os.getcwd())

from dataclasses import dataclass, field, replace
from typing import List, Optional
import json
from copy import deepcopy
import torch.nn.functional as F

import datasets

import transformers
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    EarlyStoppingCallback,
    set_seed, WEIGHTS_NAME,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers import DataCollatorForSeq2Seq

from datasets import load_dataset

# noinspection PyUnresolvedReferences
# import sled  # *** required so that SledModels will be registered for the AutoClasses ***

from utils.config import handle_args_to_ignore
from utils.decoding import decode
from metrics import load_metric
from utils.duplicates import drop_duplicates_in_input
from utils.override_training_args import TrainingOverridesArguments
from utils.custom_seq2seq_trainer import CustomTrainer
from utils.custom_hf_argument_parser import CustomHfArgumentParser
from metrics.metrics import HFMetricWrapper, MetricCollection

logger = logging.getLogger('sled')

PREFIX_DOC_SEP = '\n\n'

DEBUG = os.environ.get('DEBUG', 'false').lower() in {'1', 'true', 'yes'}  # If set, will set some configuration to help debug
if DEBUG:
    assert not torch.cuda.is_available() or torch.cuda.device_count() == 1


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    drop_duplicates_in_eval: bool = field(
        default=True,
    )

    def __post_init__(self):
        pass
    


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The name of the dataset to use (via the datasets library) or name of the file in src/data."
        },
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    metric_names: Optional[List[str]] = field(
        default=None,
        metadata={"help": "The name of the metric to use (from src/metrics)."},
    )
    input_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    input_prefix_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the input prefix (e.g. questions), when those exist."},
    )
    output_column: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={
            "help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
            "(a jsonlines or csv file)."
        },
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={
            "help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_source_length: Optional[int] = field(
        default=None,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    eval_max_source_length: Optional[int] = field(
        default=None,
        metadata={"help": "if None, will be same as max_source_length"},
    )
    max_prefix_length: Optional[int] = field(
        default=0,
        metadata={
            "help": "The maximum total input_prefix sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded from the left "
                    "(only used if prefixes are not merged)."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad all samples to model maximum sentence length. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
            "efficient on GPU but very bad for TPU."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
            "value if set."
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
            "which is used during ``evaluate`` and ``predict``."
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
        },
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
    data_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Defining the data_dir of the dataset configuration."},
    )
    download_mode: Optional[str] = field(
        default=None,
        metadata={
            "help": "Defining the download_mode when loading the dataset. Options are `reuse_dataset_if_exists` (default), `reuse_cache_if_exists` and `force_redownload`."
        },
    )
    evaluate_on_training_data: bool = field(
        default=False,
        metadata={"help": "Whether to evaluate on training data or not, to make sure the model can overfit."},
    )
    folder_suffix: str = field(
        default="",
        metadata={"help": "args to be suffixes for the output folder of the run"},
    )
    preprocess_only: bool = field(
        default=False,
        metadata={"help": "Preprocess only: Don't start training, just do the things before"},
    )
    assign_zero_to_too_long_val_examples: bool = field(
        default=False,
        metadata={
            "help": "If true, all sequences longer then max_source_length will be assign a score of 0 in the metric evaluation"
        },
    )
    shared_storage: bool = field(
        default=True,
        metadata={"help": "Whether nodes share the same storage"},
    )
    trim_very_long_strings: bool = field(
        default=False,
        metadata={"help": "Whether to trim very long strings before tokenizing them"},
    )
    pad_prefix: bool = field(
        default=False,
        metadata={
            "help": "Whether to pad the prefix if it exists to max_prefix_length. "
                    "Note - important if you are using a SLED model on an input that contains an input_prefix"
        },
    )
    test_start_ind: Optional[int] = field(
        default=None,
        metadata={"help": "if given, uses the test set starting from this index"},
    )
    test_end_ind: Optional[int] = field(
        default=None,
        metadata={"help": "if given, uses the test set ending at this index"},
    )
    # Uri:
    patience: Optional[int] = field(
        default=None,
    )
    length_penalty: Optional[float] = field(
        default=1.0,
    )
    extra_metrics: Optional[List[str]] = field(
        default=None,
        metadata={"help": "The name of the metric to use (from src/metrics)."},
    )
    chunked_training_size: Optional[int] = field(
        default=None,
    )
    oracle_training: Optional[bool] = field(
        default=False,
        metadata={"help": "If True, train on the input sentences that provide the highest ROUGE score with the labels"}
    )
    oracle_merge: Optional[bool] = field(
        default=False,
        metadata={"help": "If True, merge the oracle dataset and the standard training dataset"}
    )
    def __post_init__(self):
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length
        if self.pad_prefix and self.max_prefix_length == 0:
            raise ValueError('When padding prefix, you must set a max_prefix_length')
        assert self.max_prefix_length == 0 or self.max_prefix_length <= 0.5*self.max_source_length,\
            'If max_prefix_length is given, it must be much shorter than the total input'
        # Uri: 
        if self.eval_max_source_length is None:
            self.eval_max_source_length = self.max_source_length


@dataclass
class UnlimiformerArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
    test_unlimiformer: Optional[bool] = field(
        default=False,
        metadata={
            "help": "whether to use KNN."
        },
    )
    unlimiformer_verbose: Optional[bool] = field(
        default=False,
        metadata={
            "help": "whether to print KNN intermediate predictions (mostly for debugging)."
        },
    )
    layer_begin: Optional[int] = field(
        default=0,
        metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
                          "By default, it will be applied to all layers: [0:None]]"}, 
    )
    layer_end: Optional[int] = field(
        default=None,
        metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
                          "By default, it will be applied to all layers: [0:None]]"}, 
    )
    unlimiformer_chunk_overlap: Optional[float] = field(
        default=0.5,
        metadata={"help": "The fraction of overlap between input chunks"},
    )
    unlimiformer_chunk_size: Optional[int] = field(
        default=None,
        metadata={"help": "The size of each input chunk"},
    )
    unlimiformer_head_num: Optional[int] = field(
        default=None,
        metadata={"help": "The head to apply KNN to (if None, apply to all heads)"},
    )
    unlimiformer_exclude: Optional[bool] = field(
        default=False,
        metadata={
            "help": "If True, prioritize the inputs that are **not** in the standard attention window."
        },
    )
    random_unlimiformer_training: Optional[bool] = field(
        default=False,
    )
    unlimiformer_training: Optional[bool] = field(
        default=False,
    )
    use_datastore: Optional[bool] = field(default=False)
    flat_index: Optional[bool] = field(default=False)
    test_datastore: Optional[bool] = field(default=False)
    reconstruct_embeddings: Optional[bool] = field(default=False)
    gpu_datastore: Optional[bool] = field(default=True)
    gpu_index: Optional[bool] = field(default=True)


def main():
    handle_args_to_ignore(sys.argv)  # Just for sweeps

    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = CustomHfArgumentParser((ModelArguments, DataTrainingArguments, TrainingOverridesArguments, UnlimiformerArguments))
    model_args, data_args, training_args, unlimiformer_args = parser.parse_dictionary_and_args()
    
    set_up_logging(training_args)
    logger.info(f"Training Arguments: {training_args}")
    logger.info(f"Data Arguments: {data_args}")
    logger.info(f"Model Arguments: {model_args}")
    logger.info(f"Unlimiformer Arguments: {unlimiformer_args}")


    # Added to avoid wandb.errors.UsageError: Error communicating with wandb process
    wandb.init(settings=wandb.Settings(start_method="fork"), name=training_args.output_dir)

    # Used to find missing dependencies early on
    load_metric(data_args.metric_names, **locals())
    load_extra_metrics(data_args.extra_metrics)

    if data_args.source_prefix is None and model_args.model_name_or_path in [
        "t5-small",
        "t5-base",
        "t5-large",
        "t5-3b",
        "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
            "`--source_prefix 'summarize: ' `"
        )

    # Detecting last checkpoint.
    last_checkpoint = _detect_last_checkpoint(training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    seq2seq_dataset = _get_dataset(data_args, model_args, training_args)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_name = None
    if model_args.config_name:
        config_name = model_args.config_name
    else:
        if os.path.isfile(model_args.model_name_or_path):
            config_name = os.path.dirname(model_args.model_name_or_path)
        else:
            config_name = model_args.model_name_or_path

    config_overrides = {}
    if training_args.gradient_checkpointing is not None:
        config_overrides["gradient_checkpointing"] = training_args.gradient_checkpointing

    config = AutoConfig.from_pretrained(
        config_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=training_args.use_auth_token,
        **config_overrides
    )
    # override for sled models to make sure we are explicit in our request
    # if isinstance(config, SledConfig) and (not data_args.pad_prefix or data_args.max_prefix_length == 0):
    #     logger.warning('Setting prepend_prefix to False if using a SLED model, as the input does not have a prefix or '
    #                    'pad_prefix is False (all prefixes must be of the same length for SLED). If you do not use SLED '
    #                    'or finetune on a dataset with no prefixes, ignore this warning')
    #     config.prepend_prefix = False

    if model_args.model_name_or_path is None:
        # Padding for divisibility by 8
        if config.vocab_size % 8 != 0 and training_args.fp16_padding:
            config.vocab_size += 8 - (config.vocab_size % 8)

    tokenizer_name = None
    if model_args.tokenizer_name:
        tokenizer_name = model_args.tokenizer_name
    else:
        if os.path.isfile(model_args.model_name_or_path):
            tokenizer_name = os.path.dirname(model_args.model_name_or_path)
        else:
            tokenizer_name = model_args.model_name_or_path
    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_name,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=training_args.use_auth_token,
    )
    if model_args.model_name_or_path is not None:
        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=training_args.use_auth_token,
        )
    else:
        model = AutoModelForSeq2SeqLM.from_config(
            config,
        )
    if unlimiformer_args.test_unlimiformer:
        unlimiformer_kwargs = {
            'layer_begin': unlimiformer_args.layer_begin, 
            'layer_end': unlimiformer_args.layer_end,
            'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num, 
            'exclude_attention': unlimiformer_args.unlimiformer_exclude, 
            'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap,
            'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size,
            'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer,
            'unlimiformer_training': unlimiformer_args.unlimiformer_training,
            'use_datastore': unlimiformer_args.use_datastore,
            'flat_index': unlimiformer_args.flat_index,
            'test_datastore': unlimiformer_args.test_datastore,
            'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings,
            'gpu_datastore': unlimiformer_args.gpu_datastore,
            'gpu_index': unlimiformer_args.gpu_index
        }
        if unlimiformer_args.random_unlimiformer_training:
            model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs)
        else:
            model = Unlimiformer.convert_model(model, **unlimiformer_kwargs)

    model.config.use_cache = True
    if training_args.gradient_checkpointing and getattr(model.config, 'use_cache', False) and training_args.do_train:
        logger.warning('Cannot use cache in models when using gradient checkpointing. turning it off')
        model.config.use_cache = False

    model.resize_token_embeddings(len(tokenizer))

    if model.config.decoder_start_token_id is None:
        raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = seq2seq_dataset["train"].column_names
    elif training_args.do_eval:
        column_names = seq2seq_dataset["validation"].column_names
    elif training_args.do_predict:
        column_names = seq2seq_dataset["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    if data_args.input_column is None:
        input_column = "input"
    else:
        input_column = data_args.input_column
        if input_column not in column_names:
            raise ValueError(
                f"--input_column' value '{data_args.input_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.input_prefix_column is None:
        input_prefix_column = "input_prefix"
    else:
        input_prefix_column = data_args.input_prefix_column
        if input_prefix_column not in column_names:
            raise ValueError(
                f"--input_prefix_column' value '{data_args.input_prefix_column}' needs to be one of: {', '.join(column_names)}"
            )
    if data_args.output_column is None:
        output_column = "output"
    else:
        output_column = data_args.output_column
        if output_column not in column_names:
            raise ValueError(
                f"--output_column' value '{data_args.output_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    def preprocess_function_kwargs_fn():
        return {
            "tokenizer": deepcopy(tokenizer),
            "prefix": prefix,
            "input_column": input_column,
            "input_prefix_column": input_prefix_column,
            "output_column": output_column,
            "max_source_length": data_args.max_source_length,
            "max_prefix_length": data_args.max_prefix_length,
            "max_target_length": max_target_length,
            "prefix_sep": PREFIX_DOC_SEP,
            "padding": padding,
            "ignore_pad_token_for_loss": data_args.ignore_pad_token_for_loss,
            "assign_zero_to_too_long_val_examples": data_args.assign_zero_to_too_long_val_examples,
            "trim_very_long_strings": data_args.trim_very_long_strings,
            "pad_prefix": data_args.pad_prefix
        }

    if training_args.do_train:
        if "train" not in seq2seq_dataset:
            raise ValueError("--do_train requires a train dataset")
        logger.info("")
        logger.info("Training examples before tokenization:")
        if input_prefix_column in column_names:
            logger.info(f"input_prefix #0: {seq2seq_dataset['train'][0][input_prefix_column]}")
        # logger.info(f"input #0: {seq2seq_dataset['train'][0]['input']}")
        # logger.info(f"output #0: {seq2seq_dataset['train'][0]['output']}")
        if input_prefix_column in column_names:
            logger.info(f"input_prefix #1: {seq2seq_dataset['train'][1][input_prefix_column]}")
        # logger.info(f"input #1: {seq2seq_dataset['train'][1]['input']}")
        # logger.info(f"output #1: {seq2seq_dataset['train'][1]['output']}")
        logger.info("")
        untokenized_train_dataset = seq2seq_dataset["train"]
        if data_args.max_train_samples is not None:
            untokenized_train_dataset = untokenized_train_dataset.select(range(data_args.max_train_samples))

        if DEBUG:
            # In debug mode, we want to recreate the data
            data_args.shared_storage = False
            data_args.overwrite_cache = True
        with training_args.main_process_first(
            local=not data_args.shared_storage, desc="train dataset map pre-processing"
            ):

            if data_args.oracle_training:
                logger.info("Using oracle training")
                oracle_processed_dir = f'oracle_input_{data_args.dataset_config_name}'
                if os.path.isdir(oracle_processed_dir):
                    logger.info(f"Using oracle training from {oracle_processed_dir}")
                    oracle_training_set = datasets.load_from_disk(oracle_processed_dir)
                else:
                    rouge_scorer = datasets.load_metric('rouge')
                    oracle_training_set = untokenized_train_dataset.map(
                        extract_oracle_sent_batch,
                        fn_kwargs={'max_length': data_args.max_source_length,
                                'tokenizer': tokenizer,
                                'rouge_scorer': rouge_scorer},
                        batched=True,
                        batch_size=1,
                        num_proc=data_args.preprocessing_num_workers,
                        load_from_cache_file=not data_args.overwrite_cache,
                        desc="Extracting oracle sentences from every training example",
                    )
                    oracle_training_set.save_to_disk(oracle_processed_dir)
                
                
                if data_args.oracle_merge:
                    untokenized_train_dataset = datasets.concatenate_datasets([untokenized_train_dataset, oracle_training_set])
                    untokenized_train_dataset = untokenized_train_dataset.shuffle(seed=training_args.seed)
                else:
                    untokenized_train_dataset = oracle_training_set

            train_dataset = untokenized_train_dataset.map(
                preprocess_function,
                fn_kwargs=preprocess_function_kwargs_fn(),
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=untokenized_train_dataset.column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

            if data_args.chunked_training_size is not None:
                train_dataset = train_dataset.map(
                    chunk_dataset_function,
                    fn_kwargs={'chunk_size': data_args.chunked_training_size},
                    batched=True,
                    num_proc=data_args.preprocessing_num_workers,
                    load_from_cache_file=not data_args.overwrite_cache,
                    desc="Chunking train dataset source",
                )
                train_dataset = train_dataset.shuffle(seed=training_args.seed)

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        preprocess_function_kwargs = preprocess_function_kwargs_fn()
        preprocess_function_kwargs["max_target_length"] = max_target_length
        preprocess_function_kwargs['max_source_length'] = data_args.eval_max_source_length
        if "validation" not in seq2seq_dataset:
            raise ValueError("--do_eval requires a validation dataset")
        logger.info("")
        logger.info("Validation examples before tokenization:")
        if input_prefix_column in column_names:
            logger.info(f"input_prefix #0: {seq2seq_dataset['validation'][0][input_prefix_column]}")
        # logger.info(f"input #0: {seq2seq_dataset['validation'][0]['input']}")
        # logger.info(f"output #0: {seq2seq_dataset['validation'][0]['output']}")
        if input_prefix_column in column_names:
            logger.info(f"input_prefix #1: {seq2seq_dataset['validation'][1][input_prefix_column]}")
        # logger.info(f"input #1: {seq2seq_dataset['validation'][1]['input']}")
        # logger.info(f"output #1: {seq2seq_dataset['validation'][1]['output']}")
        logger.info("")
        untokenized_eval_dataset = seq2seq_dataset["validation"]
        if data_args.max_eval_samples is not None:
            untokenized_eval_dataset = untokenized_eval_dataset.select(range(data_args.max_eval_samples))
        if model_args.drop_duplicates_in_eval is True:
            untokenized_eval_dataset = drop_duplicates_in_input(untokenized_eval_dataset)
        untokenized_eval_dataset_orig = untokenized_eval_dataset
        assert training_args.eval_fraction > 0
        n = len(untokenized_eval_dataset)
        training_args = replace(training_args, eval_fraction = min(training_args.eval_fraction, n))
        if training_args.eval_fraction != 1:
            if training_args.eval_fraction > 1:
                assert training_args.eval_fraction == int(training_args.eval_fraction)
                logger.info(f'using predetermined absolute samples from eval set ({training_args.eval_fraction} )')
                training_args = replace(training_args, eval_fraction = training_args.eval_fraction / n)
            indices = np.random.permutation(n)[:int(np.ceil(max(1, training_args.eval_fraction * n)))]
            untokenized_eval_dataset = type(untokenized_eval_dataset).from_dict(untokenized_eval_dataset[indices])
            logger.info(f'During training, will only use {training_args.eval_fraction:.3%} samples of the eval set '
                        f'which amounts to {len(untokenized_eval_dataset)} out of {n} samples')

        eval_dataset = process_eval_set(data_args, preprocess_function_kwargs, training_args, untokenized_eval_dataset)
        eval_dataset_orig = eval_dataset
        if training_args.eval_fraction < 1:
            eval_dataset_orig = process_eval_set(data_args, preprocess_function_kwargs, training_args,
                                                 untokenized_eval_dataset_orig)

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        preprocess_function_kwargs = preprocess_function_kwargs_fn()
        preprocess_function_kwargs["max_target_length"] = max_target_length
        preprocess_function_kwargs['max_source_length'] = data_args.eval_max_source_length
        if "test" not in seq2seq_dataset:
            raise ValueError("--do_predict requires a test dataset")
        untokenized_predict_dataset = seq2seq_dataset["test"]
        if data_args.max_predict_samples is not None:
            untokenized_predict_dataset = untokenized_predict_dataset.select(range(data_args.max_predict_samples))
        if model_args.drop_duplicates_in_eval is True:
            untokenized_predict_dataset = drop_duplicates_in_input(untokenized_predict_dataset)

        if output_column in untokenized_predict_dataset.column_names:
            untokenized_predict_dataset = untokenized_predict_dataset.remove_columns(output_column)

        if data_args.test_start_ind is not None:
            sind =  data_args.test_start_ind
            eind = -1 if data_args.test_end_ind is None else data_args.test_end_ind
            logger.info(f'Using only a subset of the test dataset [{sind}, {eind}]')
            untokenized_predict_dataset = type(untokenized_predict_dataset).from_dict(untokenized_predict_dataset[sind:eind])

        with training_args.main_process_first(
            local=not data_args.shared_storage, desc="prediction dataset map pre-processing"
        ):
            predict_dataset = untokenized_predict_dataset.map(
                preprocess_function,
                fn_kwargs=preprocess_function_kwargs,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=untokenized_predict_dataset.column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    if data_args.preprocess_only:
        logger.info(f"With --preprocess_only, exiting after preprocess_on the data")
        exit()

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    pad_to = 8 if training_args.fp16 and training_args.fp16_padding else None


    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=pad_to,
    )

    # Metric
    compute_metrics = load_metric(data_args.metric_names, **locals())
    compute_metrics = load_extra_metrics(data_args.extra_metrics, compute_metrics)

    # Initialize our Trainer
    trainer = CustomTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        untokenized_eval_dataset=untokenized_eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
        output_dir=training_args.output_dir,
        data_args=data_args,
        callbacks=[EarlyStoppingCallback(early_stopping_patience=data_args.patience)] if data_args.patience is not None else None,
    )

    # setup_cometml_trainer_callback(trainer)

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint  # look for checkpoints in the outdir

        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        logger.info('Done training')
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        if training_args.eval_fraction < 1:
            logger.info('setting the eval set back to the full one')
            trainer.eval_dataset = eval_dataset_orig
            trainer._untokenized_eval_dataset = untokenized_eval_dataset_orig

        metrics = trainer.evaluate(metric_key_prefix="eval", use_cache=True, length_penalty=data_args.length_penalty)
        logger.info('Done evaluating')

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")
        trainer.args.predict_with_generate = True # during prediction, we don't have labels

        # load last (and best) model, or the one specified if any
        logger.info("*** Loading model weights before the prediction ***")
        last_checkpoint = model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else _detect_last_checkpoint(training_args)
        if last_checkpoint is not None and os.path.isdir(last_checkpoint):
            logger.info(f'Loading weights from {last_checkpoint} for the prediction')
            state_dict = torch.load(os.path.join(last_checkpoint, WEIGHTS_NAME), map_location="cpu")
            # If the model is on the GPU, it still works!
            # trainer._load_state_dict_in_model(state_dict)
            # release memory
            del state_dict
            logger.info("*** Done loading weights ***")
        elif training_args.do_train:
            raise ValueError('Could not find a model to load for prediction')
        else:
            logger.info(f'Using {model_args.model_name_or_path} as the model for the prediction')

        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", use_cache=True)
        logger.info('Done predicting')

        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                id_to_prediction = {}
                for i, instance in enumerate(untokenized_predict_dataset):
                    id_to_prediction[instance["id"]] = predict_results.predictions[i]
                predictions = decode(id_to_prediction, tokenizer, data_args)
                output_name = "generated_predictions.json"
                if data_args.test_start_ind is not None:
                    output_name = f"generated_predictions_{data_args.test_start_ind}_{data_args.test_end_ind}.json"
                output_prediction_file = os.path.join(training_args.output_dir, output_name)
                with open(output_prediction_file, "w") as writer:
                    json.dump(predictions, writer, indent=4)

    if training_args.push_to_hub:
        kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
        if data_args.dataset_name is not None:
            kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                kwargs["dataset_args"] = data_args.dataset_config_name
                kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                kwargs["dataset"] = data_args.dataset_name

        trainer.push_to_hub(**kwargs)

    return results

def _detect_last_checkpoint(training_args):
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train:
        if not training_args.overwrite_output_dir:
            last_checkpoint = get_last_checkpoint(training_args.output_dir)

            if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
                logger.info(
                    f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                    "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
                )
    return last_checkpoint

def process_eval_set(data_args, preprocess_function_kwargs, training_args, untokenized_eval_dataset):
    with training_args.main_process_first(
            local=not data_args.shared_storage, desc="validation dataset map pre-processing"
    ):
        eval_dataset = untokenized_eval_dataset.map(
            preprocess_function,
            fn_kwargs=preprocess_function_kwargs,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=untokenized_eval_dataset.column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )
    return eval_dataset


def _get_dataset(data_args, model_args, training_args):
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files this script will use the first column for the full texts and the second column for the
    # summaries (unless you specify column names for this with the `input_column` and `output_column` arguments).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    data_files = None
    if data_args.train_file is not None or data_args.validation_file is not None or data_args.test_file is not None:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
    # Downloading and loading a dataset from the hub/local script.
    seq2seq_dataset = load_dataset(
        data_args.dataset_name,
        data_args.dataset_config_name,
        verification_mode='no_checks',
        cache_dir=model_args.cache_dir,
        data_dir=data_args.data_dir,
        data_files=data_files,
        download_mode=data_args.download_mode,
        use_auth_token=training_args.use_auth_token
    )
    if training_args.do_train:
        training_args.apply_overrides(len(seq2seq_dataset['train']))
    if data_args.evaluate_on_training_data:
        seq2seq_dataset["validation"] = seq2seq_dataset["train"]

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    return seq2seq_dataset


def set_up_logging(training_args):
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

def extract_oracle_sent_batch(examples, max_length, tokenizer, rouge_scorer):
    items = examples.data.items()
    keys = [item[0] for item in items]
    values = [item[1] for item in items]
    extracted = {k: [] for k in keys}
    input_str = 'input'

    for ex in zip(*values):
        ex = dict(zip(keys, ex))
        ex_input = ex[input_str]
        extracted_input = extract_oracle_sentences(ex_input, ex['output'], max_length, tokenizer, rouge_scorer)
        extracted[input_str].append(extracted_input)
        for k in set(keys) - {input_str}:
            extracted[k].append(ex[k])
    return extracted

def extract_oracle_sentences(input_sequence, output, max_length, tokenizer, rouge_scorer, criterion='rouge/geometric_mean'):
    sentences = nltk.sent_tokenize(input_sequence)
    selected_mask = [False for _ in sentences]

    max_rouge = 0.0
    joined_selection = ''
    counter = 0
    while len(tokenizer(joined_selection)) < max_length and counter < 100:
        cur_max_rouge = max_rouge
        max_index = -1
        
        cur_candidate_indices = []
        cur_candidates = []
        for i in range(len(sentences)):
            if selected_mask[i]:
                # We already selected this sentence
                continue
            candidate_mask = list(selected_mask)
            candidate_mask[i] = True
            candidate_prediction = ' '.join(sent for sent, mask in zip(sentences, candidate_mask) if mask)
            cur_candidates.append(candidate_prediction)
            cur_candidate_indices.append(i)
        
        rouge = rouge_scorer.compute(predictions=cur_candidates, references=[[output]] * len(cur_candidates), use_aggregator=False)
        aggregated_rouge_types = [s1.fmeasure * s2.fmeasure * sL.fmeasure for s1, s2, sL in zip(rouge['rouge1'], rouge['rouge2'], rouge['rougeLsum'])]
        max_index = np.argmax(aggregated_rouge_types)
        cur_max_rouge = aggregated_rouge_types[max_index]
        
        if max_rouge >= cur_max_rouge:
            # No sentence improves the score
            break
        
        selected_mask[cur_candidate_indices[max_index]] = True
        max_rouge = cur_max_rouge
        joined_selection = ' '.join(sent for sent, mask in zip(sentences, selected_mask) if mask)
        counter += 1
    
    return joined_selection        
    

def chunk_dataset_function(examples, chunk_size):
    input_ids_str = 'input_ids'
    attention_mask_str = 'attention_mask'
    items = examples.data.items()
    keys = [item[0] for item in items]
    values = [item[1] for item in items]
    chunked = {k: [] for k in keys}
    for ex in zip(*values):
        ex = dict(zip(keys, ex))
        for i in range(0, len(ex[input_ids_str]), chunk_size):
            chunked_input_ids_st = ex[input_ids_str][i:i + chunk_size]
            chunked_attention_mask = ex[attention_mask_str][i:i + chunk_size]

            if sum(chunked_attention_mask) < 10:
                continue
            chunked[input_ids_str].append(chunked_input_ids_st)
            chunked[attention_mask_str].append(chunked_attention_mask)
            for k in set(keys) - {input_ids_str, attention_mask_str}:
                chunked[k].append(ex[k])
    return chunked

    

def preprocess_function(
    examples,
    tokenizer,
    prefix,
    input_column,
    input_prefix_column,
    output_column,
    max_source_length,
    max_prefix_length,
    max_target_length,
    prefix_sep,
    padding,
    ignore_pad_token_for_loss,
    assign_zero_to_too_long_val_examples,
    trim_very_long_strings,
    pad_prefix
):
    if not isinstance(examples[input_column][0], str):
        model_inputs = _preprocess_tokenized_inputs()
    else:
        model_inputs = _preprocess_raw_inputs(assign_zero_to_too_long_val_examples, examples, input_column, input_prefix_column,
                                              max_source_length, padding, prefix, tokenizer, trim_very_long_strings, max_prefix_length,
                                              prefix_sep, pad_prefix)

    _preprocess_targets(examples, ignore_pad_token_for_loss, max_target_length, model_inputs, output_column, padding, tokenizer)
    model_inputs["length"] = [len(x) for x in model_inputs["input_ids"]]
    return model_inputs


def _preprocess_raw_inputs(assign_zero_to_too_long_val_examples, examples, input_column, input_prefix_column,
                           max_source_length, padding, prefix, tokenizer, trim_very_long_strings, max_prefix_length,
                           prefix_sep, pad_prefix):
    inputs = examples[input_column]

    # the given prefix is what used in models like T5 (e.g. "summarize: ")
    # if prefix exists, it is added to the input_prefixes
    if input_prefix_column in examples.keys():
        input_prefixes = [inp + prefix_sep for inp in examples[input_prefix_column]]
        if prefix != "":
            input_prefixes = [prefix + inp for inp in input_prefixes]
    elif prefix != "":
        inputs = [prefix + inp for inp in inputs]

    # tokenize the input prefix if it exists
    model_prefix_inputs = None
    if input_prefix_column in examples.keys():
        if trim_very_long_strings:
            input_prefixes = [inp[: max_prefix_length * 7] for inp in input_prefixes]
        if pad_prefix:
            model_prefix_inputs = tokenizer(input_prefixes, max_length=max_prefix_length, padding='max_length', truncation=True)
        else:
            # for led, we do not pad the prefix
            model_prefix_inputs = tokenizer(input_prefixes, max_length=max_source_length, padding='do_not_pad', truncation=True)

    if trim_very_long_strings:
        inputs = [inp[: max_source_length * 7] for inp in inputs]
    model_inputs = tokenizer(inputs, max_length=max_source_length, padding=padding, truncation=True)

    if max_source_length is not None and assign_zero_to_too_long_val_examples:
        model_inputs_untrimmed = tokenizer(inputs)
        model_inputs["not_valid_for_eval"] = [
            len(token_ids) > max_source_length for token_ids in model_inputs_untrimmed["input_ids"]
        ]
    else:
        model_inputs["not_valid_for_eval"] = [False] * len(model_inputs["input_ids"])

    # now, combine the concat prefix to the input, trimming it to max_source_length if given
    if model_prefix_inputs is not None:
        max_source_length = max_source_length or -1
        model_inputs['input_ids'] = [(inp1+inp2)[:max_source_length] for inp1, inp2
                                     in zip(model_prefix_inputs['input_ids'], model_inputs['input_ids'])]
        model_inputs['attention_mask'] = [(inp1+inp2)[:max_source_length] for inp1, inp2
                                          in zip(model_prefix_inputs['attention_mask'], model_inputs['attention_mask'])]
        # add prefix_length
        if pad_prefix:
            # no need to go over them as they will all be of the same length
            model_inputs['prefix_length'] = [max_prefix_length] * len(model_inputs['input_ids'])
        else:
            model_inputs['prefix_length'] = [len(inp) for inp in model_prefix_inputs['input_ids']]

    return model_inputs

def _preprocess_targets(examples, ignore_pad_token_for_loss, max_target_length, model_inputs, output_column, padding, tokenizer):
    targets = examples[output_column] if output_column in examples else None
    if targets is not None:
        if not isinstance(targets[0], str):
            if max_target_length is not None:
                targets = [target[:max_target_length] for target in targets]
            model_inputs["labels"] = targets
        else:
            # Setup the tokenizer for targets
            with tokenizer.as_target_tokenizer():
                labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)

            # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
            # padding in the loss.
            if padding == "max_length" and ignore_pad_token_for_loss:
                labels["input_ids"] = [
                    [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
                ]

            model_inputs["labels"] = labels["input_ids"]

def load_extra_metrics(metric_names, loaded_metrics=None):
    if loaded_metrics is None:
        loaded_metrics = MetricCollection([])
    if metric_names is not None:
        for metric_name in metric_names:
            if len(metric_name) > 0:
                loaded_metrics._metrics.append(HFMetricWrapper(metric_name))
    return loaded_metrics

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()