File size: 22,960 Bytes
abca9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conditional text generation with the auto-regressive models of the library (GPT/GPT-2/CTRL/Transformer-XL/XLNet)
"""


import argparse
import inspect
import logging

from dataclasses import dataclass, field
from typing import  Tuple, List, Optional, Union

import numpy as np
import torch
import os

normal_repr = torch.Tensor.__repr__
torch.Tensor.__repr__ = lambda self: f"{self.shape}_{normal_repr(self)}"

from transformers import (
    AutoTokenizer,
    BloomForCausalLM,
    BloomTokenizerFast,
    CTRLLMHeadModel,
    CTRLTokenizer,
    GenerationMixin,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    GPTJForCausalLM,
    HfArgumentParser,
    LlamaForCausalLM,
    LlamaTokenizer,
    OpenAIGPTLMHeadModel,
    OpenAIGPTTokenizer,
    OPTForCausalLM,
    TransfoXLLMHeadModel,
    TransfoXLTokenizer,
    XLMTokenizer,
    XLMWithLMHeadModel,
    XLNetLMHeadModel,
    XLNetTokenizer,
    TextStreamer,
)
from transformers.modeling_outputs import CausalLMOutputWithPast

from unlimiformer import Unlimiformer
from random_training_unlimiformer import RandomTrainingUnlimiformer

@dataclass
class UnlimiformerArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
    test_unlimiformer: Optional[bool] = field(
        default=False,
        metadata={
            "help": "whether to use KNN."
        },
    )
    unlimiformer_verbose: Optional[bool] = field(
        default=False,
        metadata={
            "help": "whether to print KNN intermediate predictions (mostly for debugging)."
        },
    )
    layer_begin: Optional[int] = field(
        default=0,
        metadata={"help": "The layer to begin applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
                          "By default, it will be applied to all layers: [0:None]]"}, 
    )
    layer_end: Optional[int] = field(
        default=None,
        metadata={"help": "The layer to end applying KNN to. KNN will be applied to layers[knn_layer_begin:layer_end]. "
                          "By default, it will be applied to all layers: [0:None]]"}, 
    )
    unlimiformer_chunk_overlap: Optional[float] = field(
        default=0.5,
        metadata={"help": "The fraction of overlap between input chunks"},
    )
    unlimiformer_chunk_size: Optional[int] = field(
        default=None,
        metadata={"help": "The size of each input chunk"},
    )
    unlimiformer_head_num: Optional[int] = field(
        default=None,
        metadata={"help": "The head to apply KNN to (if None, apply to all heads)"},
    )
    unlimiformer_exclude: Optional[bool] = field(
        default=False,
        metadata={
            "help": "If True, prioritize the inputs that are **not** in the standard attention window."
        },
    )
    random_unlimiformer_training: Optional[bool] = field(
        default=False,
    )
    unlimiformer_training: Optional[bool] = field(
        default=False,
    )
    index_devices: Optional[List[int]] = field(
        default_factory=lambda: (0,),
    )
    datastore_device: Optional[int] = field(
        default=0,
    )
    use_datastore: Optional[bool] = field(default=True)
    flat_index: Optional[bool] = field(default=True)
    test_datastore: Optional[bool] = field(default=False)
    reconstruct_embeddings: Optional[bool] = field(default=False)
    gpu_datastore: Optional[bool] = field(default=True)
    gpu_index: Optional[bool] = field(default=True)


logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)
logger = logging.getLogger(__name__)

MAX_LENGTH = int(10000)  # Hardcoded max length to avoid infinite loop

MODEL_CLASSES = {
    "gpt2": (GPT2LMHeadModel, GPT2Tokenizer),
    "ctrl": (CTRLLMHeadModel, CTRLTokenizer),
    "openai-gpt": (OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    "xlnet": (XLNetLMHeadModel, XLNetTokenizer),
    "transfo-xl": (TransfoXLLMHeadModel, TransfoXLTokenizer),
    "xlm": (XLMWithLMHeadModel, XLMTokenizer),
    "gptj": (GPTJForCausalLM, AutoTokenizer),
    "bloom": (BloomForCausalLM, BloomTokenizerFast),
    "llama": (LlamaForCausalLM, LlamaTokenizer),
    "opt": (OPTForCausalLM, GPT2Tokenizer),
}

# Padding text to help Transformer-XL and XLNet with short prompts as proposed by Aman Rusia
# in https://github.com/rusiaaman/XLNet-gen#methodology
# and https://medium.com/@amanrusia/xlnet-speaks-comparison-to-gpt-2-ea1a4e9ba39e
PREFIX = """In 1991, the remains of Russian Tsar Nicholas II and his family
(except for Alexei and Maria) are discovered.
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
remainder of the story. 1883 Western Siberia,
a young Grigori Rasputin is asked by his father and a group of men to perform magic.
Rasputin has a vision and denounces one of the men as a horse thief. Although his
father initially slaps him for making such an accusation, Rasputin watches as the
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"""


def set_seed(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


#
# Functions to prepare models' input
#


def prepare_ctrl_input(args, _, tokenizer, prompt_text):
    if args.temperature > 0.7:
        logger.info("CTRL typically works better with lower temperatures (and lower top_k).")

    encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False)
    if not any(encoded_prompt[0] == x for x in tokenizer.control_codes.values()):
        logger.info("WARNING! You are not starting your generation from a control code so you won't get good results")
    return prompt_text


def prepare_xlm_input(args, model, tokenizer, prompt_text):
    # kwargs = {"language": None, "mask_token_id": None}

    # Set the language
    use_lang_emb = hasattr(model.config, "use_lang_emb") and model.config.use_lang_emb
    if hasattr(model.config, "lang2id") and use_lang_emb:
        available_languages = model.config.lang2id.keys()
        if args.xlm_language in available_languages:
            language = args.xlm_language
        else:
            language = None
            while language not in available_languages:
                language = input("Using XLM. Select language in " + str(list(available_languages)) + " >>> ")

        model.config.lang_id = model.config.lang2id[language]
        # kwargs["language"] = tokenizer.lang2id[language]

    # TODO fix mask_token_id setup when configurations will be synchronized between models and tokenizers
    # XLM masked-language modeling (MLM) models need masked token
    # is_xlm_mlm = "mlm" in args.model_name_or_path
    # if is_xlm_mlm:
    #     kwargs["mask_token_id"] = tokenizer.mask_token_id

    return prompt_text


def prepare_xlnet_input(args, _, tokenizer, prompt_text):
    prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
    prompt_text = prefix + prompt_text
    return prompt_text


def prepare_transfoxl_input(args, _, tokenizer, prompt_text):
    prefix = args.prefix if args.prefix else args.padding_text if args.padding_text else PREFIX
    prompt_text = prefix + prompt_text
    return prompt_text


PREPROCESSING_FUNCTIONS = {
    "ctrl": prepare_ctrl_input,
    "xlm": prepare_xlm_input,
    "xlnet": prepare_xlnet_input,
    "transfo-xl": prepare_transfoxl_input,
}


def adjust_length_to_model(length, max_sequence_length):
    if length < 0 and max_sequence_length > 0:
        length = max_sequence_length
    elif 0 < max_sequence_length < length:
        length = max_sequence_length  # No generation bigger than model size
    elif length < 0:
        length = MAX_LENGTH  # avoid infinite loop
    return length


def sparse_model_config(model_config):
    embedding_size = None
    if hasattr(model_config, "hidden_size"):
        embedding_size = model_config.hidden_size
    elif hasattr(model_config, "n_embed"):
        embedding_size = model_config.n_embed
    elif hasattr(model_config, "n_embd"):
        embedding_size = model_config.n_embd

    num_head = None
    if hasattr(model_config, "num_attention_heads"):
        num_head = model_config.num_attention_heads
    elif hasattr(model_config, "n_head"):
        num_head = model_config.n_head

    if embedding_size is None or num_head is None or num_head == 0:
        raise ValueError("Check the model config")

    num_embedding_size_per_head = int(embedding_size / num_head)
    if hasattr(model_config, "n_layer"):
        num_layer = model_config.n_layer
    elif hasattr(model_config, "num_hidden_layers"):
        num_layer = model_config.num_hidden_layers
    else:
        raise ValueError("Number of hidden layers couldn't be determined from the model config")

    return num_layer, num_head, num_embedding_size_per_head


def generate_past_key_values(model, batch_size, seq_len):
    num_block_layers, num_attention_heads, num_embedding_size_per_head = sparse_model_config(model.config)
    if model.config.model_type == "bloom":
        past_key_values = tuple(
            (
                torch.empty(int(num_attention_heads * batch_size), num_embedding_size_per_head, seq_len)
                .to(model.dtype)
                .to(model.device),
                torch.empty(int(num_attention_heads * batch_size), seq_len, num_embedding_size_per_head)
                .to(model.dtype)
                .to(model.device),
            )
            for _ in range(num_block_layers)
        )
    else:
        past_key_values = tuple(
            (
                torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
                .to(model.dtype)
                .to(model.device),
                torch.empty(batch_size, num_attention_heads, seq_len, num_embedding_size_per_head)
                .to(model.dtype)
                .to(model.device),
            )
            for _ in range(num_block_layers)
        )
    return past_key_values


def prepare_jit_inputs(inputs, model, tokenizer):
    batch_size = len(inputs)
    dummy_input = tokenizer.batch_encode_plus(inputs, return_tensors="pt")
    dummy_input = dummy_input.to(model.device)
    if model.config.use_cache:
        dummy_input["past_key_values"] = generate_past_key_values(model, batch_size, 1)
    dummy_input["attention_mask"] = torch.cat(
        [
            torch.zeros(dummy_input["attention_mask"].shape[0], 1)
            .to(dummy_input["attention_mask"].dtype)
            .to(model.device),
            dummy_input["attention_mask"],
        ],
        -1,
    )
    return dummy_input


class _ModelFallbackWrapper(GenerationMixin):
    __slots__ = ("_optimized", "_default")

    def __init__(self, optimized, default):
        self._optimized = optimized
        self._default = default

    def __call__(self, *args, **kwargs):
        if kwargs["past_key_values"] is None and self._default.config.use_cache:
            kwargs["past_key_values"] = generate_past_key_values(self._default, kwargs["input_ids"].shape[0], 0)
        kwargs.pop("position_ids", None)
        for k in list(kwargs.keys()):
            if kwargs[k] is None or isinstance(kwargs[k], bool):
                kwargs.pop(k)
        outputs = self._optimized(**kwargs)
        lm_logits = outputs[0]
        past_key_values = outputs[1]
        fixed_output = CausalLMOutputWithPast(
            loss=None,
            logits=lm_logits,
            past_key_values=past_key_values,
            hidden_states=None,
            attentions=None,
        )
        return fixed_output

    def __getattr__(self, item):
        return getattr(self._default, item)

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, use_cache=None, **kwargs
    ):
        return self._default.prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, **kwargs
        )

    def _reorder_cache(
        self, past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
        [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return self._default._reorder_cache(past_key_values, beam_idx)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )

    parser.add_argument("--prompt", type=str, default="")
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--num_hidden_layers", type=int, default=None)
    parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped")

    parser.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
    )
    parser.add_argument(
        "--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
    )
    parser.add_argument("--k", type=int, default=0)
    parser.add_argument("--p", type=float, default=0.9)

    parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.")
    parser.add_argument("--suffix", type=str, default="", help="Text added after the input.")
    parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.")
    parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")

    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument("--stream_output", action="store_true")
    parser.add_argument("--num_return_sequences", type=int, default=1, help="The number of samples to generate.")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument("--jit", action="store_true", help="Whether or not to use jit trace to accelerate inference")

    # args = parser.parse_args()
    args, unknown_args = parser.parse_known_args()

    hf_parser = HfArgumentParser(UnlimiformerArguments)
    unlimiformer_args, unknown_unlimiformer_args = hf_parser.parse_known_args()
    
    if len(set(unknown_args) & set(unknown_unlimiformer_args)) > 0:
        raise ValueError(f"Unknown arguments detected: {set(unknown_args) & set(unknown_unlimiformer_args)}")

    args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()

    logger.warning(f"device: {args.device}, n_gpu: {args.n_gpu}, 16-bits training: {args.fp16}")

    set_seed(args)

    # Initialize the model and tokenizer
    try:
        args.model_type = args.model_type.lower()
        model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    except KeyError:
        raise KeyError("the model {} you specified is not supported. You are welcome to add it and open a PR :)")

    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    model_kwargs = {}
    if args.num_hidden_layers is not None:
        model_kwargs["num_hidden_layers"] = args.num_hidden_layers
    model = model_class.from_pretrained(args.model_name_or_path, **model_kwargs)

    if args.fp16:
        model.half()
    model.to(args.device)

    max_seq_length = getattr(model.config, "max_position_embeddings", 0)
    args.length = adjust_length_to_model(args.length, max_sequence_length=max_seq_length)
    logger.info(args)

    if unlimiformer_args.test_unlimiformer:
        unlimiformer_kwargs = {
            'layer_begin': unlimiformer_args.layer_begin, 
            'layer_end': unlimiformer_args.layer_end,
            'unlimiformer_head_num': unlimiformer_args.unlimiformer_head_num, 
            'exclude_attention': unlimiformer_args.unlimiformer_exclude, 
            'chunk_overlap': unlimiformer_args.unlimiformer_chunk_overlap,
            'model_encoder_max_len': unlimiformer_args.unlimiformer_chunk_size,
            'verbose': unlimiformer_args.unlimiformer_verbose, 'tokenizer': tokenizer,
            'unlimiformer_training': unlimiformer_args.unlimiformer_training,
            'use_datastore': unlimiformer_args.use_datastore,
            'flat_index': unlimiformer_args.flat_index,
            'test_datastore': unlimiformer_args.test_datastore,
            'reconstruct_embeddings': unlimiformer_args.reconstruct_embeddings,
            'gpu_datastore': unlimiformer_args.gpu_datastore,
            'gpu_index': unlimiformer_args.gpu_index,
            'index_devices': unlimiformer_args.index_devices,
            'datastore_device': unlimiformer_args.datastore_device,
        }
        if unlimiformer_args.random_unlimiformer_training:
            model = RandomTrainingUnlimiformer.convert_model(model, **unlimiformer_kwargs)
        else:
            model = Unlimiformer.convert_model(model, **unlimiformer_kwargs)

    prompt_text = args.prompt if args.prompt else input("Model prompt >>> ")
    # Check if prompt_text is a valid file name:
    if os.path.exists(prompt_text):
        with open(prompt_text, "r") as f:
            prompt_text = f.read()

    # Different models need different input formatting and/or extra arguments
    requires_preprocessing = args.model_type in PREPROCESSING_FUNCTIONS.keys()
    if requires_preprocessing:
        prepare_input = PREPROCESSING_FUNCTIONS.get(args.model_type)
        preprocessed_prompt_text = prepare_input(args, model, tokenizer, prompt_text)

        if model.__class__.__name__ in ["TransfoXLLMHeadModel"]:
            tokenizer_kwargs = {"add_space_before_punct_symbol": True}
        else:
            tokenizer_kwargs = {}

        encoded_prompt = tokenizer.encode(
            preprocessed_prompt_text, add_special_tokens=False, return_tensors="pt", **tokenizer_kwargs
        )
    else:
        # prefix = args.prefix if args.prefix else args.padding_text
        prompt_text = f'{args.prefix}{prompt_text}{args.suffix}'
        encoded_prompt = tokenizer.encode(prompt_text, add_special_tokens=False, return_tensors="pt")
    
    if not unlimiformer_args.test_unlimiformer:
        encoded_prompt = encoded_prompt[:, -2048:]
        encoded_prompt = encoded_prompt.to(args.device)

    if encoded_prompt.size()[-1] == 0:
        input_ids = None
    else:
        input_ids = encoded_prompt

    if args.jit:
        jit_input_texts = ["enable jit"]
        jit_inputs = prepare_jit_inputs(jit_input_texts, model, tokenizer)
        torch._C._jit_set_texpr_fuser_enabled(False)
        model.config.return_dict = False
        if hasattr(model, "forward"):
            sig = inspect.signature(model.forward)
        else:
            sig = inspect.signature(model.__call__)
        jit_inputs = tuple(jit_inputs[key] for key in sig.parameters if jit_inputs.get(key, None) is not None)
        traced_model = torch.jit.trace(model, jit_inputs, strict=False)
        traced_model = torch.jit.freeze(traced_model.eval())
        traced_model(*jit_inputs)
        traced_model(*jit_inputs)

        model = _ModelFallbackWrapper(traced_model, model)

    model.eval()
    output_sequences = model.generate(
        input_ids=input_ids,
        # max_length=args.length + len(encoded_prompt[0]),
        max_new_tokens=args.length,
        temperature=args.temperature,
        top_k=args.k,
        top_p=args.p,
        repetition_penalty=args.repetition_penalty,
        do_sample=True,
        num_return_sequences=args.num_return_sequences,
        streamer=TextStreamer(tokenizer, skip_prompt=True) if args.stream_output else None,
    )

    # Remove the batch dimension when returning multiple sequences
    if len(output_sequences.shape) > 2:
        output_sequences.squeeze_()

    generated_sequences = []

    for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
        print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} (input length: {input_ids.shape[-1]}) ===")
        generated_sequence = generated_sequence.tolist()
        # generated_sequence = generated_sequence[len(encoded_prompt[0]):] + tokenizer.encode(' <end_of_prompt> ') + generated_sequence[:len(encoded_prompt[0])]

        # Decode text
        # text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
        prompt_length = min(input_ids.shape[-1], model.unlimiformer.window_size()) if unlimiformer_args.test_unlimiformer else input_ids.shape[-1]
        completion = tokenizer.decode(generated_sequence[prompt_length:])

        # Remove all text after the stop token
        # text = text[: text.find(args.stop_token) if args.stop_token else None]

        # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
        total_sequence = (
            # prompt_text + 
            '|||' + completion
        )

        generated_sequences.append(total_sequence)
        print(total_sequence)

    return generated_sequences


if __name__ == "__main__":
    main()