lhzstar
new commits
abca9bf
from typing import List, Dict
import os
import importlib
from abc import ABC, abstractmethod
import inspect
import shutil
import numpy as np
from utils.decoding import decode
from datasets import load_metric as hf_load_metric
from huggingface_hub import hf_hub_download
class Metric(ABC):
def __init__(self, **kwargs) -> None:
super().__init__()
self._kwargs = kwargs
self.prefix = os.path.splitext(os.path.basename(inspect.getfile(self.__class__)))[0]
self.requires_decoded = False
def __call__(self, id_to_pred, id_to_labels, is_decoded=False):
if self.requires_decoded and is_decoded is False:
id_to_pred = self._decode(id_to_pred)
id_to_labels = self._decode(id_to_labels)
return self._compute_metrics(id_to_pred, id_to_labels)
@abstractmethod
def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
return
def _decode(self, id_to_something):
tokenizer = self._kwargs.get("tokenizer")
data_args = self._kwargs.get("data_args")
return decode(id_to_something, tokenizer, data_args)
class MetricCollection(Metric):
def __init__(self, metrics: List[Metric], **kwargs):
super().__init__(**kwargs)
self._metrics = metrics
def __call__(self, id_to_pred, id_to_labels):
return self._compute_metrics(id_to_pred, id_to_labels)
def _compute_metrics(self, id_to_pred, id_to_labels):
results = {}
id_to_pred_decoded = None
id_to_labels_decoded = None
for metric in self._metrics:
metric_prefix = f"{metric.prefix}/" if metric.prefix else ""
if metric.requires_decoded:
if id_to_pred_decoded is None:
id_to_pred_decoded = self._decode(id_to_pred)
if id_to_labels_decoded is None:
id_to_labels_decoded = self._decode(id_to_labels)
result = metric(id_to_pred_decoded, id_to_labels_decoded, is_decoded=True)
else:
result = metric(id_to_pred, id_to_labels)
results.update({f"{metric_prefix}{k}": np.mean(v) if type(v) is list else v for k, v in result.items() if type(v) is not str})
results["num_predicted"] = len(id_to_pred)
results["mean_prediction_length_characters"] = np.mean([len(pred) for pred in id_to_pred_decoded.values()])
elem = next(iter(id_to_pred.values()))
if not ((isinstance(elem, list) and isinstance(elem[0], str)) or isinstance(elem, str)):
tokenizer = self._kwargs["tokenizer"]
results["mean_prediction_length_tokens"] = np.mean(
[np.count_nonzero(np.array(pred) != tokenizer.pad_token_id) for pred in id_to_pred.values()]
) # includes BOS/EOS tokens
results = {key: round(value, 4) for key, value in results.items()}
return results
def load_metric(paths: List[str], **kwargs):
if paths is None or len(paths) == 0:
return None
if isinstance(paths, str):
paths = [paths]
else:
paths = [path for path in paths]
metric_cls_list = []
scrolls_custom_metrics = []
to_remove = []
for i, path in enumerate(paths):
if not os.path.isfile(path):
scrolls_custom_metrics.append(path)
to_remove.append(i)
for i in sorted(to_remove, reverse=True):
del paths[i]
if len(scrolls_custom_metrics) > 0:
scrolls_custom_metrics.insert(0, "") # In order to have an identifying comma in the beginning
metric_cls_list.append(ScrollsWrapper(",".join(scrolls_custom_metrics), **kwargs))
for path in paths:
path = path.strip()
if len(path) == 0:
continue
if os.path.isfile(path) is False:
path = os.path.join("src", "metrics", f"{path}.py")
module = path[:-3].replace(os.sep, ".")
metric_cls = import_main_class(module)
metric_cls_list.append(metric_cls(**kwargs))
return MetricCollection(metric_cls_list, **kwargs)
# Modified from datasets.load
def import_main_class(module_path):
"""Import a module at module_path and return its main class"""
module = importlib.import_module(module_path)
main_cls_type = Metric
# Find the main class in our imported module
module_main_cls = None
for name, obj in module.__dict__.items():
if isinstance(obj, type) and issubclass(obj, main_cls_type):
if inspect.isabstract(obj):
continue
module_main_cls = obj
break
return module_main_cls
class ScrollsWrapper(Metric):
def __init__(self, comma_separated_metric_names, **kwargs) -> None:
super().__init__(**kwargs)
self.prefix = None
self._metric = hf_load_metric(download_metric(), comma_separated_metric_names, keep_in_memory=True)
self.requires_decoded = True
def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
return self._metric.compute(**self._metric.convert_from_map_format(id_to_pred, id_to_labels))
class HFMetricWrapper(Metric):
def __init__(self, metric_name, **kwargs) -> None:
super().__init__(**kwargs)
self._metric = hf_load_metric(metric_name)
self.kwargs = HFMetricWrapper.metric_specific_kwargs.get(metric_name, {})
self.requires_decoded = True
self.prefix = metric_name
self.requires_decoded = True
def _compute_metrics(self, id_to_pred, id_to_labels) -> Dict[str, float]:
return self._metric.compute(**self.convert_from_map_format(id_to_pred, id_to_labels), **self.kwargs)
def convert_from_map_format(self, id_to_pred, id_to_labels):
index_to_id = list(id_to_pred.keys())
predictions = [id_to_pred[id_] for id_ in index_to_id]
references = [id_to_labels[id_] for id_ in index_to_id]
return {"predictions": predictions, "references": references}
metric_specific_kwargs = {
'bertscore': {
# 'model_type': 'microsoft/deberta-large-mnli' or the larger 'microsoft/deberta-xlarge-mnli'
'model_type': 'facebook/bart-large-mnli', # has context window of 1024,
'num_layers': 11 # according to: https://docs.google.com/spreadsheets/d/1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/edit#gid=0
}
}
def download_metric():
# here we load the custom metrics
scrolls_metric_path = hf_hub_download(repo_id="tau/scrolls", filename="metrics/scrolls.py", repo_type='dataset')
updated_scrolls_metric_path = (
os.path.dirname(scrolls_metric_path) + os.path.basename(scrolls_metric_path).replace(".", "_") + ".py"
)
shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
return updated_scrolls_metric_path