Spaces:
Sleeping
Sleeping
# import os | |
# os.system('pip install streamlit transformers torch') | |
# import streamlit as st | |
# from transformers import BartTokenizer, BartForConditionalGeneration | |
# # Load the model and tokenizer | |
# model_name = 'facebook/bart-large-cnn' | |
# tokenizer = BartTokenizer.from_pretrained(model_name) | |
# model = BartForConditionalGeneration.from_pretrained(model_name) | |
# def summarize_text(text): | |
# inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") | |
# summary_ids = model.generate( | |
# inputs["input_ids"], | |
# max_length=150, | |
# min_length=30, | |
# length_penalty=2.0, | |
# num_beams=4, | |
# early_stopping=True | |
# ) | |
# summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# return summary | |
# st.title("Text Summarization with Fine-Tuned Model") | |
# st.write("Enter text to generate a summary using the fine-tuned summarization model.") | |
# text = st.text_area("Input Text", height=200) | |
# if st.button("Summarize"): | |
# if text: | |
# with st.spinner("Summarizing..."): | |
# summary = summarize_text(text) | |
# st.success("Summary Generated") | |
# st.write(summary) | |
# else: | |
# st.warning("Please enter some text to summarize.") | |
# if __name__ == "__main__": | |
# st.set_option('deprecation.showfileUploaderEncoding', False) | |
# st.markdown( | |
# """ | |
# <style> | |
# .reportview-container { | |
# flex-direction: row; | |
# justify-content: center. | |
# } | |
# </style> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
import os | |
os.system('pip install streamlit transformers torch') | |
import streamlit as st | |
from transformers import pipeline | |
# Load the summarization pipeline | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
def summarize_text(text): | |
summary = summarizer(text, max_length=150, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True) | |
return summary[0]['summary_text'] | |
st.title("Text Summarization with Fine-Tuned Model") | |
st.write("Enter text to generate a summary using the fine-tuned summarization model.") | |
text = st.text_area("Input Text", height=200) | |
if st.button("Summarize"): | |
if text: | |
with st.spinner("Summarizing..."): | |
summary = summarize_text(text) | |
st.success("Summary Generated") | |
st.write(summary) | |
else: | |
st.warning("Please enter some text to summarize.") | |
if __name__ == "__main__": | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
st.markdown( | |
""" | |
<style> | |
.reportview-container { | |
flex-direction: row; | |
justify-content: center. | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |