Spaces:
Running
Running
luanpoppe
commited on
Commit
·
ca8a144
1
Parent(s):
1fd7b67
feat: adicionandoresumo cursor completo
Browse files- _utils/resumo_completo_cursor.py +550 -198
- _utils/resumo_simples_cursor.py +221 -0
- requirements.txt +0 -0
- resumos/serializer.py +32 -1
- resumos/views.py +36 -3
- setup/urls.py +3 -2
_utils/resumo_completo_cursor.py
CHANGED
@@ -1,17 +1,43 @@
|
|
|
|
1 |
import os
|
2 |
-
from typing import List, Dict, Tuple
|
3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
from langchain.chains import create_extraction_chain
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from dataclasses import dataclass
|
11 |
import uuid
|
12 |
import json
|
13 |
-
from
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
17 |
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
@@ -20,202 +46,528 @@ os.environ["LANGCHAIN_PROJECT"]="VELLA"
|
|
20 |
|
21 |
@dataclass
|
22 |
class DocumentChunk:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
class DocumentSummarizer:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
llm = ChatOpenAI(
|
130 |
temperature=0,
|
131 |
model_name="gpt-4o-mini",
|
132 |
api_key=self.openai_api_key
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
if not metadata:
|
168 |
-
return None
|
169 |
-
|
170 |
-
return {
|
171 |
-
'page': metadata['page'],
|
172 |
-
'start_char': metadata['start_char'],
|
173 |
-
'end_char': metadata['end_char']
|
174 |
-
}
|
175 |
-
|
176 |
-
def get_llm_summary_answer_by_cursor(serializer, listaPDFs):
|
177 |
-
# By Luan
|
178 |
-
allPdfsChunks = []
|
179 |
-
|
180 |
-
# Initialize summarizer
|
181 |
-
summarizer = DocumentSummarizer(
|
182 |
-
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
183 |
-
embedding=serializer["hf_embedding"],
|
184 |
-
chunk_config={"size": serializer["chunk_size"], "overlap": serializer["chunk_overlap"]},
|
185 |
-
system_prompt=serializer["system_prompt"],
|
186 |
-
model=serializer["model"]
|
187 |
-
)
|
188 |
-
|
189 |
-
# Load and process document
|
190 |
-
for pdf in listaPDFs:
|
191 |
-
pdf_path = pdf
|
192 |
-
chunks = summarizer.load_and_split_document(pdf_path)
|
193 |
-
allPdfsChunks = allPdfsChunks + chunks
|
194 |
-
|
195 |
-
vector_store = summarizer.create_vector_store(allPdfsChunks)
|
196 |
-
|
197 |
-
# Generate structured summary
|
198 |
-
structured_summaries = summarizer.generate_summary_with_sources(vector_store)
|
199 |
-
|
200 |
-
# Print or return the structured data
|
201 |
-
# print(structured_summaries)
|
202 |
-
json_data = json.dumps(structured_summaries)
|
203 |
-
print("\n\n")
|
204 |
-
print(json_data)
|
205 |
-
return structured_summaries
|
206 |
-
# If you need to send to frontend, you can just return structured_summaries
|
207 |
-
# It will be in the format:
|
208 |
-
# [
|
209 |
-
# {
|
210 |
-
# "content": "Summary point 1...",
|
211 |
-
# "source": {
|
212 |
-
# "page": 1,
|
213 |
-
# "text": "Source text...",
|
214 |
-
# "relevance_score": 0.95
|
215 |
-
# }
|
216 |
-
# },
|
217 |
-
# ...
|
218 |
-
# ]
|
219 |
-
|
220 |
-
if __name__ == "__main__":
|
221 |
-
get_llm_summary_answer_by_cursor()
|
|
|
1 |
+
|
2 |
import os
|
3 |
+
from typing import List, Dict, Tuple, Optional
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_community.chat_models import ChatOpenAI
|
9 |
from langchain.chains import create_extraction_chain
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
from dataclasses import dataclass
|
12 |
import uuid
|
13 |
import json
|
14 |
+
from anthropic import Anthropic
|
15 |
+
import numpy as np
|
16 |
+
from rank_bm25 import BM25Okapi
|
17 |
+
import logging
|
18 |
+
from cohere import Client
|
19 |
+
|
20 |
+
def reciprocal_rank_fusion(result_lists, weights=None):
|
21 |
+
"""Combine multiple ranked lists using reciprocal rank fusion"""
|
22 |
+
fused_scores = {}
|
23 |
+
num_lists = len(result_lists)
|
24 |
+
if weights is None:
|
25 |
+
weights = [1.0] * num_lists
|
26 |
+
|
27 |
+
for i in range(num_lists):
|
28 |
+
for doc_id, score in result_lists[i]:
|
29 |
+
if doc_id not in fused_scores:
|
30 |
+
fused_scores[doc_id] = 0
|
31 |
+
fused_scores[doc_id] += weights[i] * score
|
32 |
+
|
33 |
+
# Sort by score in descending order
|
34 |
+
sorted_results = sorted(
|
35 |
+
fused_scores.items(),
|
36 |
+
key=lambda x: x[1],
|
37 |
+
reverse=True
|
38 |
+
)
|
39 |
+
|
40 |
+
return sorted_results
|
41 |
|
42 |
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
43 |
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
|
|
46 |
|
47 |
@dataclass
|
48 |
class DocumentChunk:
|
49 |
+
content: str
|
50 |
+
page_number: int
|
51 |
+
chunk_id: str
|
52 |
+
start_char: int
|
53 |
+
end_char: int
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class RetrievalConfig:
|
57 |
+
num_chunks: int = 5
|
58 |
+
embedding_weight: float = 0.5
|
59 |
+
bm25_weight: float = 0.5
|
60 |
+
context_window: int = 3
|
61 |
+
chunk_overlap: int = 200
|
62 |
+
chunk_size: int = 1000
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ContextualizedChunk(DocumentChunk):
|
66 |
+
context: str = ""
|
67 |
+
embedding: Optional[np.ndarray] = None
|
68 |
+
bm25_score: Optional[float] = None
|
69 |
|
70 |
class DocumentSummarizer:
|
71 |
+
def __init__(self, openai_api_key: str, cohere_api_key: str, embedding_model, chunk_size, chunk_overlap, num_k_rerank, model_cohere_rerank):
|
72 |
+
self.openai_api_key = openai_api_key
|
73 |
+
self.cohere_client = Client(cohere_api_key)
|
74 |
+
self.embeddings = HuggingFaceEmbeddings(
|
75 |
+
model_name=embedding_model
|
76 |
+
)
|
77 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
78 |
+
chunk_size=chunk_size,
|
79 |
+
chunk_overlap=chunk_overlap
|
80 |
+
)
|
81 |
+
self.chunk_metadata = {} # Store chunk metadata for tracing
|
82 |
+
self.num_k_rerank = num_k_rerank
|
83 |
+
self.model_cohere_rerank = model_cohere_rerank
|
84 |
+
|
85 |
+
def load_and_split_document(self, pdf_path: str) -> List[DocumentChunk]:
|
86 |
+
"""Load PDF and split into chunks with metadata"""
|
87 |
+
loader = PyPDFLoader(pdf_path)
|
88 |
+
pages = loader.load()
|
89 |
+
chunks = []
|
90 |
+
char_count = 0
|
91 |
+
|
92 |
+
for page in pages:
|
93 |
+
text = page.page_content
|
94 |
+
# Split the page content
|
95 |
+
page_chunks = self.text_splitter.split_text(text)
|
96 |
+
|
97 |
+
for chunk in page_chunks:
|
98 |
+
chunk_id = str(uuid.uuid4())
|
99 |
+
start_char = text.find(chunk)
|
100 |
+
end_char = start_char + len(chunk)
|
101 |
+
|
102 |
+
doc_chunk = DocumentChunk(
|
103 |
+
content=chunk,
|
104 |
+
page_number=page.metadata.get('page') + 1, # 1-based page numbering
|
105 |
+
chunk_id=chunk_id,
|
106 |
+
start_char=char_count + start_char,
|
107 |
+
end_char=char_count + end_char
|
108 |
+
)
|
109 |
+
chunks.append(doc_chunk)
|
110 |
+
|
111 |
+
# Store metadata for later retrieval
|
112 |
+
self.chunk_metadata[chunk_id] = {
|
113 |
+
'page': doc_chunk.page_number,
|
114 |
+
'start_char': doc_chunk.start_char,
|
115 |
+
'end_char': doc_chunk.end_char
|
116 |
+
}
|
117 |
+
|
118 |
+
char_count += len(text)
|
119 |
+
|
120 |
+
return chunks
|
121 |
+
|
122 |
+
def create_vector_store(self, chunks: List[DocumentChunk]) -> Chroma:
|
123 |
+
"""Create vector store with metadata"""
|
124 |
+
texts = [chunk.content for chunk in chunks]
|
125 |
+
metadatas = [{
|
126 |
+
'chunk_id': chunk.chunk_id,
|
127 |
+
'page': chunk.page_number,
|
128 |
+
'start_char': chunk.start_char,
|
129 |
+
'end_char': chunk.end_char
|
130 |
+
} for chunk in chunks]
|
131 |
+
|
132 |
+
vector_store = Chroma.from_texts(
|
133 |
+
texts=texts,
|
134 |
+
metadatas=metadatas,
|
135 |
+
embedding=self.embeddings
|
136 |
+
)
|
137 |
+
return vector_store
|
138 |
+
|
139 |
+
def rerank_chunks(
|
140 |
+
self,
|
141 |
+
chunks: List[Dict],
|
142 |
+
query: str,
|
143 |
+
k: int = 5
|
144 |
+
) -> List[Dict]:
|
145 |
+
"""
|
146 |
+
Rerank chunks using Cohere's reranking model.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
chunks: List of dictionaries containing chunks and their metadata
|
150 |
+
query: Original search query
|
151 |
+
k: Number of top chunks to return
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
List of reranked chunks with updated relevance scores
|
155 |
+
"""
|
156 |
+
try:
|
157 |
+
# Prepare documents for reranking
|
158 |
+
documents = [chunk['content'] for chunk in chunks]
|
159 |
+
|
160 |
+
# Get reranking scores from Cohere
|
161 |
+
results = self.cohere_client.rerank(
|
162 |
+
query=query,
|
163 |
+
documents=documents,
|
164 |
+
top_n=k,
|
165 |
+
model=self.model_cohere_rerank
|
166 |
+
)
|
167 |
+
|
168 |
+
# Create reranked results with original metadata
|
169 |
+
reranked_chunks = []
|
170 |
+
for hit in results:
|
171 |
+
original_chunk = chunks[hit.index]
|
172 |
+
reranked_chunks.append({
|
173 |
+
**original_chunk,
|
174 |
+
'relevance_score': hit.relevance_score
|
175 |
+
})
|
176 |
+
|
177 |
+
return reranked_chunks
|
178 |
+
|
179 |
+
except Exception as e:
|
180 |
+
logging.error(f"Reranking failed: {str(e)}")
|
181 |
+
return chunks[:k] # Fallback to original ordering
|
182 |
+
|
183 |
+
def generate_summary_with_sources(
|
184 |
+
self,
|
185 |
+
vector_store: Chroma,
|
186 |
+
query: str = "Summarize the main points of this document"
|
187 |
+
) -> List[Dict]:
|
188 |
+
"""Generate summary with source citations using reranking"""
|
189 |
+
# Retrieve more initial chunks for reranking
|
190 |
+
relevant_docs = vector_store.similarity_search_with_score(query, k=20)
|
191 |
+
|
192 |
+
# Prepare chunks for reranking
|
193 |
+
chunks = []
|
194 |
+
for doc, score in relevant_docs:
|
195 |
+
chunks.append({
|
196 |
+
'content': doc.page_content,
|
197 |
+
'page': doc.metadata['page'],
|
198 |
+
'chunk_id': doc.metadata['chunk_id'],
|
199 |
+
'relevance_score': score
|
200 |
+
})
|
201 |
+
|
202 |
+
# Rerank chunks
|
203 |
+
reranked_chunks = self.rerank_chunks(chunks, query, k=self.num_k_rerank)
|
204 |
+
|
205 |
+
# Prepare context and sources from reranked chunks
|
206 |
+
contexts = []
|
207 |
+
sources = []
|
208 |
+
|
209 |
+
for chunk in reranked_chunks:
|
210 |
+
contexts.append(chunk['content'])
|
211 |
+
sources.append({
|
212 |
+
'content': chunk['content'],
|
213 |
+
'page': chunk['page'],
|
214 |
+
'chunk_id': chunk['chunk_id'],
|
215 |
+
'relevance_score': chunk['relevance_score']
|
216 |
+
})
|
217 |
+
|
218 |
+
prompt_template = """
|
219 |
+
Based on the following context, provide multiple key points from the document.
|
220 |
+
For each point, create a new paragraph.
|
221 |
+
Each paragraph should be a complete, self-contained insight.
|
222 |
+
|
223 |
+
Context: {context}
|
224 |
+
|
225 |
+
Key points:
|
226 |
+
"""
|
227 |
+
|
228 |
+
prompt = PromptTemplate(
|
229 |
+
template=prompt_template,
|
230 |
+
input_variables=["context"]
|
231 |
+
)
|
232 |
+
|
233 |
llm = ChatOpenAI(
|
234 |
temperature=0,
|
235 |
model_name="gpt-4o-mini",
|
236 |
api_key=self.openai_api_key
|
237 |
)
|
238 |
+
|
239 |
+
response = llm.predict(prompt.format(context="\n\n".join(contexts)))
|
240 |
+
|
241 |
+
# Split the response into paragraphs
|
242 |
+
summaries = [p.strip() for p in response.split('\n\n') if p.strip()]
|
243 |
+
|
244 |
+
# Create structured output
|
245 |
+
structured_output = []
|
246 |
+
for idx, summary in enumerate(summaries):
|
247 |
+
# Associate each summary with the most relevant source
|
248 |
+
structured_output.append({
|
249 |
+
"content": summary,
|
250 |
+
"source": {
|
251 |
+
"page": sources[min(idx, len(sources)-1)]['page'],
|
252 |
+
"text": sources[min(idx, len(sources)-1)]['content'][:200] + "...",
|
253 |
+
"relevance_score": sources[min(idx, len(sources)-1)]['relevance_score']
|
254 |
+
}
|
255 |
+
})
|
256 |
+
|
257 |
+
return structured_output
|
258 |
+
|
259 |
+
def get_source_context(self, chunk_id: str, window: int = 100) -> Dict:
|
260 |
+
"""Get extended context around a specific chunk"""
|
261 |
+
metadata = self.chunk_metadata.get(chunk_id)
|
262 |
+
if not metadata:
|
263 |
+
return None
|
264 |
+
|
265 |
+
return {
|
266 |
+
'page': metadata['page'],
|
267 |
+
'start_char': metadata['start_char'],
|
268 |
+
'end_char': metadata['end_char']
|
269 |
+
}
|
270 |
+
|
271 |
+
class ContextualRetriever:
|
272 |
+
def __init__(self, config: RetrievalConfig, claude_api_key: str, claude_context_model):
|
273 |
+
self.config = config
|
274 |
+
self.claude_client = Anthropic(api_key=claude_api_key)
|
275 |
+
self.logger = logging.getLogger(__name__)
|
276 |
+
self.bm25 = None
|
277 |
+
self.claude_context_model = claude_context_model
|
278 |
+
|
279 |
+
def generate_context(self, full_text: str, chunk: DocumentChunk) -> str:
|
280 |
+
"""Generate contextual description using Claude"""
|
281 |
+
try:
|
282 |
+
prompt = f"""<document>
|
283 |
+
{full_text}
|
284 |
+
</document>
|
285 |
+
Here is the chunk we want to situate within the whole document
|
286 |
+
<chunk>
|
287 |
+
{chunk.content}
|
288 |
+
</chunk>
|
289 |
+
Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else."""
|
290 |
+
|
291 |
+
response = self.claude_client.messages.create(
|
292 |
+
model=self.claude_context_model,
|
293 |
+
max_tokens=100,
|
294 |
+
messages=[{"role": "user", "content": prompt}]
|
295 |
+
)
|
296 |
+
return response.content[0].text
|
297 |
+
except Exception as e:
|
298 |
+
self.logger.error(f"Context generation failed for chunk {chunk.chunk_id}: {str(e)}")
|
299 |
+
return ""
|
300 |
+
|
301 |
+
def contextualize_chunks(self, full_text: str, chunks: List[DocumentChunk]) -> List[ContextualizedChunk]:
|
302 |
+
"""Add context to all chunks"""
|
303 |
+
contextualized_chunks = []
|
304 |
+
for chunk in chunks:
|
305 |
+
context = self.generate_context(full_text, chunk)
|
306 |
+
contextualized_chunk = ContextualizedChunk(
|
307 |
+
content=chunk.content,
|
308 |
+
page_number=chunk.page_number,
|
309 |
+
chunk_id=chunk.chunk_id,
|
310 |
+
start_char=chunk.start_char,
|
311 |
+
end_char=chunk.end_char,
|
312 |
+
context=context
|
313 |
+
)
|
314 |
+
contextualized_chunks.append(contextualized_chunk)
|
315 |
+
return contextualized_chunks
|
316 |
+
|
317 |
+
class EnhancedDocumentSummarizer(DocumentSummarizer):
|
318 |
+
def __init__(self, openai_api_key: str, claude_api_key: str, config: RetrievalConfig, embedding_model, chunk_size, chunk_overlap, num_k_rerank, model_cohere_rerank, claude_context_model, system_prompt, gpt_model, gpt_temperature):
|
319 |
+
super().__init__(openai_api_key, os.environ.get("COHERE_API_KEY"), embedding_model, chunk_size, chunk_overlap, num_k_rerank, model_cohere_rerank)
|
320 |
+
self.config = config
|
321 |
+
self.contextual_retriever = ContextualRetriever(config, claude_api_key, claude_context_model)
|
322 |
+
self.logger = logging.getLogger(__name__)
|
323 |
+
self.system_prompt = system_prompt
|
324 |
+
self.gpt_model = gpt_model
|
325 |
+
self.gpt_temperature = gpt_temperature
|
326 |
+
|
327 |
+
def create_enhanced_vector_store(self, chunks: List[ContextualizedChunk]) -> Tuple[Chroma, BM25Okapi, List[str]]:
|
328 |
+
"""Create vector store and BM25 index with contextualized chunks"""
|
329 |
+
try:
|
330 |
+
# Prepare texts with context
|
331 |
+
texts = [f"{chunk.context} {chunk.content}" for chunk in chunks]
|
332 |
+
|
333 |
+
# Create vector store
|
334 |
+
metadatas = [{
|
335 |
+
'chunk_id': chunk.chunk_id,
|
336 |
+
'page': chunk.page_number,
|
337 |
+
'start_char': chunk.start_char,
|
338 |
+
'end_char': chunk.end_char,
|
339 |
+
'context': chunk.context
|
340 |
+
} for chunk in chunks]
|
341 |
+
|
342 |
+
vector_store = Chroma.from_texts(
|
343 |
+
texts=texts,
|
344 |
+
metadatas=metadatas,
|
345 |
+
embedding=self.embeddings
|
346 |
+
)
|
347 |
+
|
348 |
+
# Create BM25 index
|
349 |
+
tokenized_texts = [text.split() for text in texts]
|
350 |
+
bm25 = BM25Okapi(tokenized_texts)
|
351 |
+
|
352 |
+
# Get chunk IDs in order
|
353 |
+
chunk_ids = [chunk.chunk_id for chunk in chunks]
|
354 |
+
|
355 |
+
return vector_store, bm25, chunk_ids
|
356 |
+
|
357 |
+
except Exception as e:
|
358 |
+
self.logger.error(f"Error creating enhanced vector store: {str(e)}")
|
359 |
+
raise
|
360 |
+
|
361 |
+
def retrieve_with_rank_fusion(
|
362 |
+
self,
|
363 |
+
vector_store: Chroma,
|
364 |
+
bm25: BM25Okapi,
|
365 |
+
chunk_ids: List[str],
|
366 |
+
query: str
|
367 |
+
) -> List[Dict]:
|
368 |
+
"""Combine embedding and BM25 retrieval results"""
|
369 |
+
try:
|
370 |
+
# Get embedding results
|
371 |
+
embedding_results = vector_store.similarity_search_with_score(
|
372 |
+
query,
|
373 |
+
k=self.config.num_chunks
|
374 |
+
)
|
375 |
+
|
376 |
+
# Convert embedding results to list of (chunk_id, score)
|
377 |
+
embedding_list = [
|
378 |
+
(doc.metadata['chunk_id'], 1 / (1 + score))
|
379 |
+
for doc, score in embedding_results
|
380 |
+
]
|
381 |
+
|
382 |
+
# Get BM25 results
|
383 |
+
tokenized_query = query.split()
|
384 |
+
bm25_scores = bm25.get_scores(tokenized_query)
|
385 |
+
|
386 |
+
# Convert BM25 scores to list of (chunk_id, score)
|
387 |
+
bm25_list = [
|
388 |
+
(chunk_ids[i], float(score)) for i, score in enumerate(bm25_scores)
|
389 |
+
]
|
390 |
+
|
391 |
+
# Sort bm25_list by score in descending order and limit to top N results
|
392 |
+
bm25_list = sorted(bm25_list, key=lambda x: x[1], reverse=True)[:self.config.num_chunks]
|
393 |
+
|
394 |
+
# Normalize BM25 scores
|
395 |
+
max_bm25 = max([score for _, score in bm25_list]) if bm25_list else 1
|
396 |
+
bm25_list = [(doc_id, score / max_bm25) for doc_id, score in bm25_list]
|
397 |
+
|
398 |
+
# Pass the lists to rank fusion
|
399 |
+
result_lists = [embedding_list, bm25_list]
|
400 |
+
weights = [self.config.embedding_weight, self.config.bm25_weight]
|
401 |
+
|
402 |
+
combined_results = reciprocal_rank_fusion(
|
403 |
+
result_lists,
|
404 |
+
weights=weights
|
405 |
+
)
|
406 |
+
|
407 |
+
return combined_results
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
self.logger.error(f"Error in rank fusion retrieval: {str(e)}")
|
411 |
+
raise
|
412 |
+
|
413 |
+
def generate_enhanced_summary(
|
414 |
+
self,
|
415 |
+
vector_store: Chroma,
|
416 |
+
bm25: BM25Okapi,
|
417 |
+
chunk_ids: List[str],
|
418 |
+
query: str = "Summarize the main points of this document"
|
419 |
+
) -> List[Dict]:
|
420 |
+
"""Generate enhanced summary using both vector and BM25 retrieval"""
|
421 |
+
try:
|
422 |
+
# Get combined results using rank fusion
|
423 |
+
ranked_results = self.retrieve_with_rank_fusion(
|
424 |
+
vector_store,
|
425 |
+
bm25,
|
426 |
+
chunk_ids,
|
427 |
+
query
|
428 |
+
)
|
429 |
+
|
430 |
+
# Prepare context and track sources
|
431 |
+
contexts = []
|
432 |
+
sources = []
|
433 |
+
|
434 |
+
# Get full documents for top results
|
435 |
+
for chunk_id, score in ranked_results[:self.config.num_chunks]:
|
436 |
+
results = vector_store.get(
|
437 |
+
where={"chunk_id": chunk_id},
|
438 |
+
include=["documents", "metadatas"]
|
439 |
+
)
|
440 |
+
|
441 |
+
if results["documents"]:
|
442 |
+
context = results["documents"][0]
|
443 |
+
metadata = results["metadatas"][0]
|
444 |
+
|
445 |
+
contexts.append(context)
|
446 |
+
sources.append({
|
447 |
+
'content': context,
|
448 |
+
'page': metadata['page'],
|
449 |
+
'chunk_id': chunk_id,
|
450 |
+
'relevance_score': score,
|
451 |
+
'context': metadata.get('context', '')
|
452 |
+
})
|
453 |
+
|
454 |
+
prompt_template = self.system_prompt
|
455 |
+
|
456 |
+
prompt = PromptTemplate(
|
457 |
+
template=prompt_template,
|
458 |
+
input_variables=["context"]
|
459 |
+
)
|
460 |
+
|
461 |
+
llm = ChatOpenAI(
|
462 |
+
temperature=self.gpt_temperature,
|
463 |
+
model_name=self.gpt_model,
|
464 |
+
api_key=self.openai_api_key,
|
465 |
+
)
|
466 |
+
|
467 |
+
response = llm.predict(prompt.format(context="\n\n".join(contexts)))
|
468 |
+
|
469 |
+
# Split the response into paragraphs
|
470 |
+
summaries = [p.strip() for p in response.split('\n\n') if p.strip()]
|
471 |
+
|
472 |
+
# Create structured output
|
473 |
+
structured_output = []
|
474 |
+
for idx, summary in enumerate(summaries):
|
475 |
+
source_idx = min(idx, len(sources)-1)
|
476 |
+
structured_output.append({
|
477 |
+
"content": summary,
|
478 |
+
"source": {
|
479 |
+
"page": sources[source_idx]['page'],
|
480 |
+
"text": sources[source_idx]['content'][:200] + "...",
|
481 |
+
"context": sources[source_idx]['context'],
|
482 |
+
"relevance_score": sources[source_idx]['relevance_score'],
|
483 |
+
"chunk_id": sources[source_idx]['chunk_id']
|
484 |
+
}
|
485 |
+
})
|
486 |
+
|
487 |
+
return structured_output
|
488 |
+
|
489 |
+
except Exception as e:
|
490 |
+
self.logger.error(f"Error generating enhanced summary: {str(e)}")
|
491 |
+
raise
|
492 |
+
|
493 |
+
def get_llm_summary_answer_by_cursor_complete(serializer, listaPDFs):
|
494 |
+
allPdfsChunks = []
|
495 |
+
|
496 |
+
# Configuration
|
497 |
+
config = RetrievalConfig(
|
498 |
+
num_chunks=serializer["num_chunks_retrieval"],
|
499 |
+
embedding_weight=serializer["embedding_weight"],
|
500 |
+
bm25_weight=serializer["bm25_weight"],
|
501 |
+
context_window=serializer["context_window"],
|
502 |
+
chunk_overlap=serializer["chunk_overlap"]
|
503 |
+
)
|
504 |
+
|
505 |
+
# Initialize enhanced summarizer
|
506 |
+
summarizer = EnhancedDocumentSummarizer(
|
507 |
+
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
508 |
+
claude_api_key= os.environ.get("CLAUDE_API_KEY"),
|
509 |
+
config=config,
|
510 |
+
embedding_model=serializer["hf_embedding"],
|
511 |
+
chunk_overlap=serializer["chunk_overlap"],
|
512 |
+
chunk_size=serializer["chunk_size"],
|
513 |
+
num_k_rerank=serializer["num_k_rerank"],
|
514 |
+
model_cohere_rerank=serializer["model_cohere_rerank"],
|
515 |
+
claude_context_model=serializer["claude_context_model"],
|
516 |
+
system_prompt=serializer["system_prompt"],
|
517 |
+
gpt_model=serializer["model"],
|
518 |
+
gpt_temperature=serializer["gpt_temperature"]
|
519 |
+
)
|
520 |
+
|
521 |
+
# # Load and process document
|
522 |
+
# pdf_path = "./Im_a_storyteller.pdf"
|
523 |
+
# chunks = summarizer.load_and_split_document(pdf_path)
|
524 |
+
|
525 |
+
# Load and process document
|
526 |
+
for pdf in listaPDFs:
|
527 |
+
pdf_path = pdf
|
528 |
+
chunks = summarizer.load_and_split_document(pdf_path)
|
529 |
+
allPdfsChunks = allPdfsChunks + chunks
|
530 |
+
|
531 |
+
# Get full text for contextualization
|
532 |
+
loader = PyPDFLoader(pdf_path)
|
533 |
+
pages = loader.load()
|
534 |
+
full_text = " ".join([page.page_content for page in pages])
|
535 |
+
|
536 |
+
# Contextualize chunks
|
537 |
+
contextualized_chunks = summarizer.contextual_retriever.contextualize_chunks(full_text, allPdfsChunks)
|
538 |
+
|
539 |
+
# Create enhanced vector store and BM25 index
|
540 |
+
vector_store, bm25, chunk_ids = summarizer.create_enhanced_vector_store(contextualized_chunks)
|
541 |
+
|
542 |
+
# Generate enhanced summary
|
543 |
+
structured_summaries = summarizer.generate_enhanced_summary(
|
544 |
+
vector_store,
|
545 |
+
bm25,
|
546 |
+
chunk_ids,
|
547 |
+
serializer["user_message"]
|
548 |
+
)
|
549 |
|
550 |
+
# Output results as JSON
|
551 |
+
json_output = json.dumps(structured_summaries, indent=2)
|
552 |
+
print("\nStructured Summaries:")
|
553 |
+
print(json_output)
|
554 |
+
return {
|
555 |
+
"resultado": structured_summaries,
|
556 |
+
"parametros-utilizados": {
|
557 |
+
"num_chunks_retrieval": serializer["num_chunks_retrieval"],
|
558 |
+
"embedding_weight": serializer["embedding_weight"],
|
559 |
+
"bm25_weight": serializer["bm25_weight"],
|
560 |
+
"context_window": serializer["context_window"],
|
561 |
+
"chunk_overlap": serializer["chunk_overlap"],
|
562 |
+
"num_k_rerank": serializer["num_k_rerank"],
|
563 |
+
"model_cohere_rerank": serializer["model_cohere_rerank"],
|
564 |
+
"more_initial_chunks_for_reranking": serializer["more_initial_chunks_for_reranking"],
|
565 |
+
"claude_context_model": serializer["claude_context_model"],
|
566 |
+
"gpt_temperature": serializer["gpt_temperature"],
|
567 |
+
"user_message": serializer["user_message"],
|
568 |
+
"model": serializer["model"],
|
569 |
+
"hf_embedding": serializer["hf_embedding"],
|
570 |
+
"chunk_size": serializer["chunk_size"],
|
571 |
+
"chunk_overlap": serializer["chunk_overlap"],
|
572 |
+
"system_prompt": serializer["system_prompt"],
|
573 |
+
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_utils/resumo_simples_cursor.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Dict, Tuple
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.chains import create_extraction_chain
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import uuid
|
12 |
+
import json
|
13 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
14 |
+
from setup.environment import default_model
|
15 |
+
|
16 |
+
os.environ["LANGCHAIN_TRACING_V2"]="true"
|
17 |
+
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
|
18 |
+
os.environ.get("LANGCHAIN_API_KEY")
|
19 |
+
os.environ["LANGCHAIN_PROJECT"]="VELLA"
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class DocumentChunk:
|
23 |
+
content: str
|
24 |
+
page_number: int
|
25 |
+
chunk_id: str
|
26 |
+
start_char: int
|
27 |
+
end_char: int
|
28 |
+
|
29 |
+
class DocumentSummarizer:
|
30 |
+
def __init__(self, openai_api_key: str, model, embedding, chunk_config, system_prompt):
|
31 |
+
self.model = model
|
32 |
+
self.system_prompt = system_prompt
|
33 |
+
self.openai_api_key = openai_api_key
|
34 |
+
self.embeddings = HuggingFaceEmbeddings(
|
35 |
+
model_name=embedding
|
36 |
+
)
|
37 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
38 |
+
chunk_size=chunk_config["size"],
|
39 |
+
chunk_overlap=chunk_config["overlap"]
|
40 |
+
)
|
41 |
+
self.chunk_metadata = {} # Store chunk metadata for tracing
|
42 |
+
|
43 |
+
def load_and_split_document(self, pdf_path: str) -> List[DocumentChunk]:
|
44 |
+
"""Load PDF and split into chunks with metadata"""
|
45 |
+
loader = PyPDFLoader(pdf_path)
|
46 |
+
pages = loader.load()
|
47 |
+
chunks = []
|
48 |
+
char_count = 0
|
49 |
+
|
50 |
+
for page in pages:
|
51 |
+
text = page.page_content
|
52 |
+
# Split the page content
|
53 |
+
page_chunks = self.text_splitter.split_text(text)
|
54 |
+
|
55 |
+
for chunk in page_chunks:
|
56 |
+
chunk_id = str(uuid.uuid4())
|
57 |
+
start_char = text.find(chunk)
|
58 |
+
end_char = start_char + len(chunk)
|
59 |
+
|
60 |
+
doc_chunk = DocumentChunk(
|
61 |
+
content=chunk,
|
62 |
+
page_number=page.metadata.get('page') + 1, # 1-based page numbering
|
63 |
+
chunk_id=chunk_id,
|
64 |
+
start_char=char_count + start_char,
|
65 |
+
end_char=char_count + end_char
|
66 |
+
)
|
67 |
+
chunks.append(doc_chunk)
|
68 |
+
|
69 |
+
# Store metadata for later retrieval
|
70 |
+
self.chunk_metadata[chunk_id] = {
|
71 |
+
'page': doc_chunk.page_number,
|
72 |
+
'start_char': doc_chunk.start_char,
|
73 |
+
'end_char': doc_chunk.end_char
|
74 |
+
}
|
75 |
+
|
76 |
+
char_count += len(text)
|
77 |
+
|
78 |
+
return chunks
|
79 |
+
|
80 |
+
def create_vector_store(self, chunks: List[DocumentChunk]) -> Chroma:
|
81 |
+
"""Create vector store with metadata"""
|
82 |
+
texts = [chunk.content for chunk in chunks]
|
83 |
+
metadatas = [{
|
84 |
+
'chunk_id': chunk.chunk_id,
|
85 |
+
'page': chunk.page_number,
|
86 |
+
'start_char': chunk.start_char,
|
87 |
+
'end_char': chunk.end_char
|
88 |
+
} for chunk in chunks]
|
89 |
+
|
90 |
+
vector_store = Chroma.from_texts(
|
91 |
+
texts=texts,
|
92 |
+
metadatas=metadatas,
|
93 |
+
embedding=self.embeddings
|
94 |
+
)
|
95 |
+
return vector_store
|
96 |
+
|
97 |
+
def generate_summary_with_sources(
|
98 |
+
self,
|
99 |
+
vector_store: Chroma,
|
100 |
+
query: str = "Summarize the main points of this document"
|
101 |
+
) -> List[Dict]:
|
102 |
+
"""Generate summary with source citations, returning structured JSON data"""
|
103 |
+
# Retrieve relevant chunks with metadata
|
104 |
+
relevant_docs = vector_store.similarity_search_with_score(query, k=5)
|
105 |
+
|
106 |
+
# Prepare context and track sources
|
107 |
+
contexts = []
|
108 |
+
sources = []
|
109 |
+
|
110 |
+
for doc, score in relevant_docs:
|
111 |
+
chunk_id = doc.metadata['chunk_id']
|
112 |
+
context = doc.page_content
|
113 |
+
contexts.append(context)
|
114 |
+
|
115 |
+
sources.append({
|
116 |
+
'content': context,
|
117 |
+
'page': doc.metadata['page'],
|
118 |
+
'chunk_id': chunk_id,
|
119 |
+
'relevance_score': score
|
120 |
+
})
|
121 |
+
|
122 |
+
prompt = PromptTemplate(
|
123 |
+
template=self.system_prompt,
|
124 |
+
input_variables=["context"]
|
125 |
+
)
|
126 |
+
llm = ""
|
127 |
+
|
128 |
+
if (self.model == default_model):
|
129 |
+
llm = ChatOpenAI(
|
130 |
+
temperature=0,
|
131 |
+
model_name="gpt-4o-mini",
|
132 |
+
api_key=self.openai_api_key
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
llm = HuggingFaceEndpoint(
|
136 |
+
repo_id=self.model,
|
137 |
+
task="text-generation",
|
138 |
+
max_new_tokens=1100,
|
139 |
+
do_sample=False,
|
140 |
+
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
response = llm.predict(prompt.format(context="\n\n".join(contexts)))
|
145 |
+
|
146 |
+
# Split the response into paragraphs
|
147 |
+
summaries = [p.strip() for p in response.split('\n\n') if p.strip()]
|
148 |
+
|
149 |
+
# Create structured output
|
150 |
+
structured_output = []
|
151 |
+
for idx, summary in enumerate(summaries):
|
152 |
+
# Associate each summary with the most relevant source
|
153 |
+
structured_output.append({
|
154 |
+
"content": summary,
|
155 |
+
"source": {
|
156 |
+
"page": sources[min(idx, len(sources)-1)]['page'],
|
157 |
+
"text": sources[min(idx, len(sources)-1)]['content'][:200] + "...",
|
158 |
+
"relevance_score": sources[min(idx, len(sources)-1)]['relevance_score']
|
159 |
+
}
|
160 |
+
})
|
161 |
+
|
162 |
+
return structured_output
|
163 |
+
|
164 |
+
def get_source_context(self, chunk_id: str, window: int = 100) -> Dict:
|
165 |
+
"""Get extended context around a specific chunk"""
|
166 |
+
metadata = self.chunk_metadata.get(chunk_id)
|
167 |
+
if not metadata:
|
168 |
+
return None
|
169 |
+
|
170 |
+
return {
|
171 |
+
'page': metadata['page'],
|
172 |
+
'start_char': metadata['start_char'],
|
173 |
+
'end_char': metadata['end_char']
|
174 |
+
}
|
175 |
+
|
176 |
+
def get_llm_summary_answer_by_cursor(serializer, listaPDFs):
|
177 |
+
# By Luan
|
178 |
+
allPdfsChunks = []
|
179 |
+
|
180 |
+
# Initialize summarizer
|
181 |
+
summarizer = DocumentSummarizer(
|
182 |
+
openai_api_key=os.environ.get("OPENAI_API_KEY"),
|
183 |
+
embedding=serializer["hf_embedding"],
|
184 |
+
chunk_config={"size": serializer["chunk_size"], "overlap": serializer["chunk_overlap"]},
|
185 |
+
system_prompt=serializer["system_prompt"],
|
186 |
+
model=serializer["model"]
|
187 |
+
)
|
188 |
+
|
189 |
+
# Load and process document
|
190 |
+
for pdf in listaPDFs:
|
191 |
+
pdf_path = pdf
|
192 |
+
chunks = summarizer.load_and_split_document(pdf_path)
|
193 |
+
allPdfsChunks = allPdfsChunks + chunks
|
194 |
+
|
195 |
+
vector_store = summarizer.create_vector_store(allPdfsChunks)
|
196 |
+
|
197 |
+
# Generate structured summary
|
198 |
+
structured_summaries = summarizer.generate_summary_with_sources(vector_store)
|
199 |
+
|
200 |
+
# Print or return the structured data
|
201 |
+
# print(structured_summaries)
|
202 |
+
json_data = json.dumps(structured_summaries)
|
203 |
+
print("\n\n")
|
204 |
+
print(json_data)
|
205 |
+
return structured_summaries
|
206 |
+
# If you need to send to frontend, you can just return structured_summaries
|
207 |
+
# It will be in the format:
|
208 |
+
# [
|
209 |
+
# {
|
210 |
+
# "content": "Summary point 1...",
|
211 |
+
# "source": {
|
212 |
+
# "page": 1,
|
213 |
+
# "text": "Source text...",
|
214 |
+
# "relevance_score": 0.95
|
215 |
+
# }
|
216 |
+
# },
|
217 |
+
# ...
|
218 |
+
# ]
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
get_llm_summary_answer_by_cursor()
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
resumos/serializer.py
CHANGED
@@ -26,4 +26,35 @@ class ResumoCursorSerializer(serializers.Serializer):
|
|
26 |
model = serializers.CharField(required=False, default=default_model)
|
27 |
hf_embedding = serializers.CharField(required=False, default="all-MiniLM-L6-v2")
|
28 |
chunk_size = serializers.IntegerField(required=False, default=1000)
|
29 |
-
chunk_overlap = serializers.IntegerField(required=False, default=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
model = serializers.CharField(required=False, default=default_model)
|
27 |
hf_embedding = serializers.CharField(required=False, default="all-MiniLM-L6-v2")
|
28 |
chunk_size = serializers.IntegerField(required=False, default=1000)
|
29 |
+
chunk_overlap = serializers.IntegerField(required=False, default=200)
|
30 |
+
|
31 |
+
|
32 |
+
system_prompt = """
|
33 |
+
Based on the following context, provide multiple key points from the document.
|
34 |
+
For each point, create a new paragraph.
|
35 |
+
Each paragraph should be a complete, self-contained insight.
|
36 |
+
Include any relevant context provided.
|
37 |
+
|
38 |
+
Context: {context}
|
39 |
+
|
40 |
+
Key points:
|
41 |
+
"""
|
42 |
+
user_message = "What are the main points of this document?"
|
43 |
+
class ResumoCursorCompeltoSerializer(ResumoCursorSerializer):
|
44 |
+
# files = serializers.ListField(child=serializers.FileField(), required=True)
|
45 |
+
system_prompt = serializers.CharField(required=False, default=system_prompt)
|
46 |
+
user_message = serializers.CharField(required=False, default=user_message)
|
47 |
+
# model = serializers.CharField(required=False, default=default_model)
|
48 |
+
# hf_embedding = serializers.CharField(required=False, default="all-MiniLM-L6-v2")
|
49 |
+
# chunk_size = serializers.IntegerField(required=False, default=1000)
|
50 |
+
# chunk_overlap = serializers.IntegerField(required=False, default=200)
|
51 |
+
num_chunks_retrieval = serializers.IntegerField(default=5)
|
52 |
+
embedding_weight = serializers.FloatField(default=0.5)
|
53 |
+
bm25_weight = serializers.FloatField(default=0.5)
|
54 |
+
context_window = serializers.IntegerField(default=3)
|
55 |
+
chunk_overlap = serializers.IntegerField(default=200)
|
56 |
+
num_k_rerank = serializers.IntegerField(default=5)
|
57 |
+
model_cohere_rerank = serializers.CharField(required=False, default="rerank-english-v2.0")
|
58 |
+
more_initial_chunks_for_reranking = serializers.IntegerField(default=20)
|
59 |
+
claude_context_model = serializers.CharField(required=False, default="claude-3-haiku-20240307")
|
60 |
+
gpt_temperature = serializers.FloatField(default=0)
|
resumos/views.py
CHANGED
@@ -2,9 +2,10 @@ from rest_framework.views import APIView
|
|
2 |
import tempfile, os
|
3 |
from rest_framework.response import Response
|
4 |
|
5 |
-
from _utils.resumo_completo_cursor import
|
|
|
6 |
from _utils.utils import DEFAULT_SYSTEM_PROMPT
|
7 |
-
from .serializer import ResumoPDFSerializer, ResumoCursorSerializer
|
8 |
from _utils.main import get_llm_answer_summary, get_llm_answer_summary_with_embedding
|
9 |
from setup.environment import default_model
|
10 |
from rest_framework.parsers import MultiPartParser
|
@@ -74,7 +75,7 @@ class ResumoEmbeddingView(APIView):
|
|
74 |
|
75 |
return Response({"resposta": resposta_llm})
|
76 |
|
77 |
-
class
|
78 |
parser_classes = [MultiPartParser]
|
79 |
|
80 |
@extend_schema(
|
@@ -98,6 +99,38 @@ class ResumoCompletoCursorView(APIView):
|
|
98 |
|
99 |
resposta_llm = get_llm_summary_answer_by_cursor(data, listaPDFs)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
for file in listaPDFs:
|
102 |
os.remove(file)
|
103 |
|
|
|
2 |
import tempfile, os
|
3 |
from rest_framework.response import Response
|
4 |
|
5 |
+
from _utils.resumo_completo_cursor import get_llm_summary_answer_by_cursor_complete
|
6 |
+
from _utils.resumo_simples_cursor import get_llm_summary_answer_by_cursor
|
7 |
from _utils.utils import DEFAULT_SYSTEM_PROMPT
|
8 |
+
from .serializer import ResumoCursorCompeltoSerializer, ResumoPDFSerializer, ResumoCursorSerializer
|
9 |
from _utils.main import get_llm_answer_summary, get_llm_answer_summary_with_embedding
|
10 |
from setup.environment import default_model
|
11 |
from rest_framework.parsers import MultiPartParser
|
|
|
75 |
|
76 |
return Response({"resposta": resposta_llm})
|
77 |
|
78 |
+
class ResumoSimplesCursorView(APIView):
|
79 |
parser_classes = [MultiPartParser]
|
80 |
|
81 |
@extend_schema(
|
|
|
99 |
|
100 |
resposta_llm = get_llm_summary_answer_by_cursor(data, listaPDFs)
|
101 |
|
102 |
+
for file in listaPDFs:
|
103 |
+
os.remove(file)
|
104 |
+
|
105 |
+
return Response({"resposta": resposta_llm})
|
106 |
+
|
107 |
+
class ResumoSimplesCursorCompletoView(APIView):
|
108 |
+
parser_classes = [MultiPartParser]
|
109 |
+
|
110 |
+
@extend_schema(
|
111 |
+
request=ResumoCursorCompeltoSerializer,
|
112 |
+
)
|
113 |
+
def post(self, request):
|
114 |
+
serializer = ResumoCursorCompeltoSerializer(data=request.data)
|
115 |
+
if serializer.is_valid(raise_exception=True):
|
116 |
+
print('\n\n\n')
|
117 |
+
print('serializer.validated_data: ', serializer.validated_data)
|
118 |
+
print('\n\n\n')
|
119 |
+
listaPDFs = []
|
120 |
+
data = serializer.validated_data
|
121 |
+
print('\nserializer.validated_data: ', serializer.validated_data)
|
122 |
+
|
123 |
+
for file in serializer.validated_data['files']:
|
124 |
+
file.seek(0)
|
125 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: # Create a temporary file to save the uploaded PDF
|
126 |
+
for chunk in file.chunks(): # Write the uploaded file content to the temporary file
|
127 |
+
temp_file.write(chunk)
|
128 |
+
temp_file_path = temp_file.name # Get the path of the temporary file
|
129 |
+
listaPDFs.append(temp_file_path)
|
130 |
+
print('listaPDFs: ', listaPDFs)
|
131 |
+
|
132 |
+
resposta_llm = get_llm_summary_answer_by_cursor_complete(data, listaPDFs)
|
133 |
+
|
134 |
for file in listaPDFs:
|
135 |
os.remove(file)
|
136 |
|
setup/urls.py
CHANGED
@@ -5,7 +5,7 @@ from drf_spectacular.views import SpectacularSwaggerView, SpectacularAPIView
|
|
5 |
|
6 |
|
7 |
from pdfs.views import getPDF
|
8 |
-
from resumos.views import ResumoView,
|
9 |
from modelos_usuarios.views import ListCreateModeloUsuarioView, CreateUpdateDeleteModeloUsuarioView, ListModelosPorUsuarioView
|
10 |
|
11 |
router = routers.DefaultRouter()
|
@@ -18,7 +18,8 @@ urlpatterns = [
|
|
18 |
path('', include(router.urls)),
|
19 |
path('pdf', getPDF, name='upload-pdf'),
|
20 |
path('resumo', ResumoView.as_view(), name='summary-pdf'),
|
21 |
-
path('resumo/cursor',
|
|
|
22 |
path("modelo", ListCreateModeloUsuarioView.as_view()),
|
23 |
path("modelo/<int:pk>", CreateUpdateDeleteModeloUsuarioView.as_view()),
|
24 |
path("usuario/<int:user_id>/modelos", ListModelosPorUsuarioView.as_view())
|
|
|
5 |
|
6 |
|
7 |
from pdfs.views import getPDF
|
8 |
+
from resumos.views import ResumoView, ResumoSimplesCursorView, ResumoSimplesCursorCompletoView
|
9 |
from modelos_usuarios.views import ListCreateModeloUsuarioView, CreateUpdateDeleteModeloUsuarioView, ListModelosPorUsuarioView
|
10 |
|
11 |
router = routers.DefaultRouter()
|
|
|
18 |
path('', include(router.urls)),
|
19 |
path('pdf', getPDF, name='upload-pdf'),
|
20 |
path('resumo', ResumoView.as_view(), name='summary-pdf'),
|
21 |
+
path('resumo/cursor', ResumoSimplesCursorView.as_view(), name='summary-cursor-pdf'),
|
22 |
+
path('resumo/cursor-completo', ResumoSimplesCursorCompletoView.as_view(), name='summary-cursor-completo-pdf'),
|
23 |
path("modelo", ListCreateModeloUsuarioView.as_view()),
|
24 |
path("modelo/<int:pk>", CreateUpdateDeleteModeloUsuarioView.as_view()),
|
25 |
path("usuario/<int:user_id>/modelos", ListModelosPorUsuarioView.as_view())
|