Spaces:
Sleeping
Sleeping
Luke Stanley
commited on
Commit
·
976ea17
1
Parent(s):
233efeb
Expose json typed LLM interface for RunPod
Browse files- docker-compose.yml +11 -0
- runpod.dockerfile +12 -2
- runpod_handler.py +22 -75
- test.sh +28 -0
docker-compose.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: '3.8'
|
2 |
+
services:
|
3 |
+
runpod:
|
4 |
+
build:
|
5 |
+
context: .
|
6 |
+
dockerfile: runpod.dockerfile
|
7 |
+
volumes:
|
8 |
+
- ./.cache:/runpod-volume/.cache
|
9 |
+
- ./test.sh:/test.sh
|
10 |
+
command: /test.sh
|
11 |
+
entrypoint: /usr/bin/python3
|
runpod.dockerfile
CHANGED
@@ -15,10 +15,20 @@ RUN python3.11 -m pip install pytest cmake \
|
|
15 |
huggingface_hub hf_transfer \
|
16 |
pydantic pydantic_settings \
|
17 |
llama-cpp-python
|
18 |
-
|
19 |
# Install llama-cpp-python (build with cuda)
|
20 |
ENV CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
21 |
-
RUN python3.11 -m pip install llama-cpp-python --upgrade --no-cache-dir --force-reinstall
|
|
|
22 |
ADD runpod_handler.py .
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
CMD python3.11 -u /runpod_handler.py
|
|
|
|
15 |
huggingface_hub hf_transfer \
|
16 |
pydantic pydantic_settings \
|
17 |
llama-cpp-python
|
18 |
+
|
19 |
# Install llama-cpp-python (build with cuda)
|
20 |
ENV CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
21 |
+
RUN python3.11 -m pip install git+https://github.com/lukestanley/llama-cpp-python.git@expose_json_grammar_convert_function --upgrade --no-cache-dir --force-reinstall
|
22 |
+
RUN apt-get update; apt-get install jq -y
|
23 |
ADD runpod_handler.py .
|
24 |
|
25 |
+
ADD chill.py .
|
26 |
+
ADD utils.py .
|
27 |
+
ADD promptObjects.py .
|
28 |
+
|
29 |
+
#ENV REPO_ID="TheBloke/phi-2-GGUF"
|
30 |
+
#ENV MODEL_FILE="phi-2.Q2_K.gguf"
|
31 |
+
ENV N_GPU_LAYERS=-1
|
32 |
+
ENV CONTEXT_SIZE=2048
|
33 |
CMD python3.11 -u /runpod_handler.py
|
34 |
+
|
runpod_handler.py
CHANGED
@@ -1,34 +1,7 @@
|
|
1 |
-
import
|
2 |
from os import environ as env
|
3 |
-
|
4 |
-
from llama_cpp import Llama, LlamaGrammar
|
5 |
from pydantic import BaseModel, Field
|
6 |
-
import runpod
|
7 |
-
|
8 |
-
|
9 |
-
# If your handler runs inference on a model, load the model here.
|
10 |
-
# You will want models to be loaded into memory before starting serverless.
|
11 |
-
from huggingface_hub import hf_hub_download
|
12 |
-
small_repo = "TheBloke/phi-2-GGUF"
|
13 |
-
small_model="phi-2.Q2_K.gguf"
|
14 |
-
big_repo = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
15 |
-
big_model = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"
|
16 |
-
LLM_MODEL_PATH =hf_hub_download(
|
17 |
-
repo_id=big_repo,
|
18 |
-
filename=big_model,
|
19 |
-
)
|
20 |
-
print(f"Model downloaded to {LLM_MODEL_PATH}")
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
in_memory_llm = None
|
25 |
-
|
26 |
-
N_GPU_LAYERS = env.get("N_GPU_LAYERS", -1) # Default to -1, which means use all layers if available
|
27 |
-
CONTEXT_SIZE = int(env.get("CONTEXT_SIZE", 2048))
|
28 |
-
USE_HTTP_SERVER = env.get("USE_HTTP_SERVER", "false").lower() == "true"
|
29 |
-
MAX_TOKENS = int(env.get("MAX_TOKENS", 1000))
|
30 |
-
TEMPERATURE = float(env.get("TEMPERATURE", 0.3))
|
31 |
-
|
32 |
class Movie(BaseModel):
|
33 |
title: str = Field(..., title="The title of the movie")
|
34 |
year: int = Field(..., title="The year the movie was released")
|
@@ -36,17 +9,7 @@ class Movie(BaseModel):
|
|
36 |
genre: str = Field(..., title="The genre of the movie")
|
37 |
plot: str = Field(..., title="Plot summary of the movie")
|
38 |
|
39 |
-
|
40 |
-
{ "title": "The Matrix", "year": 1999, "director": "The Wachowskis", "genre": "Science Fiction", "plot":"Prgrammer realises he lives in simulation and plays key role."
|
41 |
-
"""
|
42 |
-
|
43 |
-
if in_memory_llm is None:
|
44 |
-
print("Loading model into memory. If you didn't want this, set the USE_HTTP_SERVER environment variable to 'true'.")
|
45 |
-
in_memory_llm = Llama(model_path=LLM_MODEL_PATH, n_ctx=CONTEXT_SIZE, n_gpu_layers=N_GPU_LAYERS, verbose=True)
|
46 |
-
|
47 |
-
def llm_stream_sans_network(
|
48 |
-
prompt: str, pydantic_model_class=Movie, return_pydantic_object=False
|
49 |
-
) -> Union[str, Dict[str, Any]]:
|
50 |
schema = pydantic_model_class.model_json_schema()
|
51 |
|
52 |
# Optional example field from schema, is not needed for the grammar generation
|
@@ -54,41 +17,25 @@ def llm_stream_sans_network(
|
|
54 |
del schema["example"]
|
55 |
|
56 |
json_schema = json.dumps(schema)
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
temperature=TEMPERATURE,
|
63 |
-
grammar=grammar,
|
64 |
-
stream=True
|
65 |
-
)
|
66 |
-
|
67 |
-
output_text = ""
|
68 |
-
for chunk in stream:
|
69 |
-
result = chunk["choices"][0]
|
70 |
-
print(result["text"], end='', flush=True)
|
71 |
-
output_text = output_text + result["text"]
|
72 |
-
|
73 |
-
print('\n')
|
74 |
-
|
75 |
-
if return_pydantic_object:
|
76 |
-
model_object = pydantic_model_class.model_validate_json(output_text)
|
77 |
-
return model_object
|
78 |
-
else:
|
79 |
-
return output_text
|
80 |
-
|
81 |
-
|
82 |
def handler(job):
|
83 |
""" Handler function that will be used to process jobs. """
|
84 |
job_input = job['input']
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import runpod
|
2 |
from os import environ as env
|
3 |
+
import json
|
|
|
4 |
from pydantic import BaseModel, Field
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class Movie(BaseModel):
|
6 |
title: str = Field(..., title="The title of the movie")
|
7 |
year: int = Field(..., title="The year the movie was released")
|
|
|
9 |
genre: str = Field(..., title="The genre of the movie")
|
10 |
plot: str = Field(..., title="Plot summary of the movie")
|
11 |
|
12 |
+
def pydantic_model_to_json_schema(pydantic_model_class):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
schema = pydantic_model_class.model_json_schema()
|
14 |
|
15 |
# Optional example field from schema, is not needed for the grammar generation
|
|
|
17 |
del schema["example"]
|
18 |
|
19 |
json_schema = json.dumps(schema)
|
20 |
+
return json_schema
|
21 |
+
default_schema_example = """{ "title": ..., "year": ..., "director": ..., "genre": ..., "plot":...}"""
|
22 |
+
default_schema = pydantic_model_to_json_schema(Movie)
|
23 |
+
default_prompt = f"Instruct: \nOutput a JSON object in this format: {default_schema_example} for the following movie: The Matrix\nOutput:\n"
|
24 |
+
from utils import llm_stream_sans_network_simple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def handler(job):
|
26 |
""" Handler function that will be used to process jobs. """
|
27 |
job_input = job['input']
|
28 |
+
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf")
|
29 |
+
prompt = job_input.get('prompt', default_prompt)
|
30 |
+
schema = job_input.get('schema', default_schema)
|
31 |
+
print("got this input", str(job_input))
|
32 |
+
print("prompt", prompt )
|
33 |
+
print("schema", schema )
|
34 |
+
output = llm_stream_sans_network_simple(prompt, schema)
|
35 |
+
#print("got this output", str(output))
|
36 |
+
return f"model:{filename}\n{output}"
|
37 |
+
|
38 |
+
runpod.serverless.start({
|
39 |
+
"handler": handler,
|
40 |
+
#"return_aggregate_stream": True
|
41 |
+
})
|
test.sh
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os, json
|
3 |
+
|
4 |
+
# Define your JSON and prompt as Python dictionaries and strings
|
5 |
+
schema = {
|
6 |
+
"properties": {
|
7 |
+
"title": {"title": "The title of the movie", "type": "string"},
|
8 |
+
"year": {"title": "The year the movie was released", "type": "integer"},
|
9 |
+
"director": {"title": "The director of the movie", "type": "string"},
|
10 |
+
"genre": {"title": "The genre of the movie", "type": "string"},
|
11 |
+
"plot": {"title": "Plot summary of the movie", "type": "string"}
|
12 |
+
},
|
13 |
+
"required": ["title", "year", "director", "genre", "plot"],
|
14 |
+
"title": "Movie",
|
15 |
+
"type": "object"
|
16 |
+
}
|
17 |
+
|
18 |
+
movie ="Toy Story"
|
19 |
+
prompt = "Instruct: Output a JSON object in this format: { \"title\": ..., \"year\": ..., \"director\": ..., \"genre\": ..., \"plot\":...} for the following movie: "+movie+"\nOutput:\n"
|
20 |
+
|
21 |
+
# Construct the JSON input string
|
22 |
+
json_input = json.dumps({"input": {"schema": json.dumps(schema), "prompt": prompt}})
|
23 |
+
print(json_input)
|
24 |
+
# Define the command to execute your Python script with the JSON string
|
25 |
+
command = f'python3.11 runpod_handler.py --test_input \'{json_input}\''
|
26 |
+
|
27 |
+
# Execute the command
|
28 |
+
os.system(command)
|