Spaces:
Sleeping
Sleeping
import os | |
import openai | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
# Load pre-trained Sentence Transformer model | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Load questions and answers from the CSV file | |
df = pd.read_csv('combined_questions_and_answers.csv') | |
# Encode all questions in the dataset | |
question_embeddings = model.encode(df['Question'].tolist()) | |
# OpenAI API key setup | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Function to call OpenAI API to refine and translate text | |
def refine_text(prompt): | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=[ | |
{"role": "system", "content": "You are an assistant that refines text to make it conversational and natural. If the question is in Swahili, respond in Swahili."}, | |
{"role": "user", "content": prompt} | |
], | |
max_tokens=800, | |
n=1, | |
stop=None, | |
temperature=0.7 | |
) | |
return response['choices'][0]['message']['content'] | |
# Function to find the most similar question and provide the answer | |
def get_answer(user_question, threshold=0.80): | |
# Encode the user question | |
user_embedding = model.encode(user_question) | |
# Calculate cosine similarities | |
similarities = cosine_similarity([user_embedding], question_embeddings) | |
# Find the most similar question | |
max_similarity = np.max(similarities) | |
if max_similarity > threshold: | |
# Get the index of the most similar question | |
similar_question_idx = np.argmax(similarities) | |
# Retrieve the corresponding answer | |
answer = df.iloc[similar_question_idx]['Answer'] | |
# Refine the answer using GPT-4 | |
refined_answer = refine_text(f"Refine this answer: {answer}") | |
return refined_answer, max_similarity | |
else: | |
# Generate an answer using GPT-4 if no similar question is found | |
refined_answer = refine_text(f"Answer this question: {user_question}") | |
return refined_answer, max_similarity | |
# Gradio app | |
def gradio_app(user_question): | |
answer, similarity = get_answer(user_question) | |
return f"Similarity: {similarity}\nAnswer: {answer}" | |
# Launch the Gradio app | |
iface = gr.Interface( | |
fn=gradio_app, | |
inputs=gr.inputs.Textbox(label="Enter your question"), | |
outputs=gr.outputs.Textbox(label="Answer"), | |
title="Blood Donation Q&A", | |
description="Ask questions related to blood donation and get answers.", | |
) | |
iface.launch() |