Spaces:
Runtime error
Runtime error
import os | |
from transformers import pipeline | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
import pandas as pd | |
import gradio as gr | |
# Load pre-trained Sentence Transformer model | |
model = SentenceTransformer('LaBSE') | |
# Load questions and answers from the CSV file | |
df = pd.read_csv('combined_questions_and_answers.csv') | |
# Encode all questions in the dataset | |
question_embeddings = model.encode(df['Question'].tolist()) | |
# Hugging Face API details for Meta-Llama 3B | |
api_key = os.getenv("HUGGINGFACE_API_KEY") | |
if not api_key: | |
raise ValueError("Hugging Face API key not found in environment variables. Please set the HUGGINGFACE_API_KEY environment variable.") | |
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3-8B-Instruct", token=api_key) | |
# Function to refine and translate text using Meta-Llama 3B | |
def refine_text(prompt): | |
messages = [ | |
{"role": "user", "content": prompt}, | |
] | |
response = pipe(messages) | |
return response[0]['generated_text'] | |
# Function to find the most similar question and provide the answer | |
def get_answer(user_question, threshold=0.30): | |
# Encode the user question | |
user_embedding = model.encode(user_question) | |
# Calculate cosine similarities | |
similarities = cosine_similarity([user_embedding], question_embeddings) | |
# Find the most similar question | |
max_similarity = np.max(similarities) | |
if max_similarity > threshold: | |
# Get the index of the most similar question | |
similar_question_idx = np.argmax(similarities) | |
# Retrieve the corresponding answer | |
answer = df.iloc[similar_question_idx]['Answer'] | |
# Refine the answer using Meta-Llama 3B | |
refined_answer = refine_text(f"Refine this answer: {answer}") | |
return refined_answer, max_similarity | |
else: | |
return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity | |
# Gradio app | |
def gradio_app(user_question): | |
answer, similarity = get_answer(user_question) | |
return f"Similarity: {similarity}\nAnswer: {answer}" | |
# Launch the Gradio app | |
iface = gr.Interface( | |
fn=gradio_app, | |
inputs=gr.Textbox(label="Enter your question"), | |
outputs=gr.Textbox(label="Answer"), | |
title="Blood Donation Q&A", | |
description="Ask questions related to blood donation and get answers.", | |
) | |
iface.launch() |