File size: 12,086 Bytes
0829f5d 08fa140 0829f5d 08fa140 c6ac77f 0829f5d 85a2beb 0829f5d 7f8b654 c6ac77f 0829f5d 7f8b654 0829f5d 7f8b654 c6ac77f 0829f5d 772a49a 7f8b654 0829f5d 772a49a 7f8b654 e96e967 08fa140 772a49a e96e967 772a49a e96e967 c6ac77f 7f8b654 08fa140 7f8b654 08fa140 c6ac77f 08fa140 7f8b654 772a49a c6ac77f 08fa140 e96e967 c6ac77f 772a49a c6ac77f 7f8b654 c6ac77f 772a49a e96e967 7f8b654 c6ac77f 0829f5d 7f8b654 c6ac77f 7f8b654 e96e967 c6ac77f e96e967 c6ac77f 0829f5d 7f8b654 c6ac77f 7f8b654 e96e967 c6ac77f e96e967 7f8b654 772a49a e96e967 7f8b654 c6ac77f 0829f5d c6ac77f 0829f5d c6ac77f 0829f5d 772a49a c6ac77f 772a49a 08fa140 c6ac77f 08fa140 0829f5d e96e967 08fa140 772a49a 08fa140 e96e967 08fa140 e96e967 08fa140 772a49a 08fa140 0829f5d 08fa140 0829f5d 7f8b654 08fa140 0829f5d 08fa140 7f8b654 08fa140 0829f5d 772a49a 0829f5d 772a49a 0829f5d 772a49a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import folium
from folium import plugins
import numpy as np
import branca.colormap as cm
from datetime import datetime
class VisualizationHandler:
def __init__(self, optimal_conditions):
self.optimal_conditions = optimal_conditions
self.ndvi_colors = [
'#d73027', # Very low vegetation
'#f46d43', # Low vegetation
'#fdae61', # Sparse vegetation
'#fee08b', # Moderate vegetation
'#d9ef8b', # Good vegetation
'#a6d96a', # High vegetation
'#66bd63', # Very high vegetation
'#1a9850' # Dense vegetation
]
def create_interactive_plots(self, df):
"""Create enhanced interactive Plotly visualizations"""
if df is None or df.empty:
return go.Figure() # Return empty figure if no data
fig = make_subplots(
rows=4, cols=1,
subplot_titles=(
'<b>Temperature Pattern (°C)</b>',
'<b>Humidity Pattern (%)</b>',
'<b>Rainfall Pattern (mm/day)</b>',
'<b>Vegetation & Suitability Indices</b>'
),
vertical_spacing=0.08,
row_heights=[0.28, 0.24, 0.24, 0.24]
)
# Add temperature visualization
self.add_temperature_plot(fig, df)
# Add humidity visualization
self.add_humidity_plot(fig, df)
# Add rainfall visualization
self.add_rainfall_plot(fig, df)
# Add vegetation and suitability visualization
self.add_combined_indices_plot(fig, df)
# Update layout
fig.update_layout(
height=1000,
showlegend=True,
title={
'text': "Agricultural Conditions Analysis",
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top',
'font': dict(size=20)
},
paper_bgcolor='white',
plot_bgcolor='rgba(0,0,0,0.05)',
font=dict(size=12),
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
margin=dict(l=60, r=30, t=100, b=60)
)
# Add season shading
self.add_season_shading(fig, df)
# Update axes for all subplots
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)')
return fig
def add_temperature_plot(self, fig, df):
"""Add temperature visualization with range"""
# Temperature range area
if 'temp_max' in df.columns and 'temp_min' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['temp_max'],
name='Max Temperature',
line=dict(color='rgba(255,0,0,0.0)'),
showlegend=False
),
row=1, col=1
)
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['temp_min'],
name='Temperature Range',
fill='tonexty',
fillcolor='rgba(255,0,0,0.1)',
line=dict(color='rgba(255,0,0,0.0)')
),
row=1, col=1
)
# Main temperature line
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['temperature'],
name='Temperature',
line=dict(color='red', width=2),
mode='lines'
),
row=1, col=1
)
# Add rolling average
if 'temp_7day_avg' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['temp_7day_avg'],
name='7-Day Average',
line=dict(color='darkred', width=1, dash='dot'),
mode='lines'
),
row=1, col=1
)
# Add optimal range
for limit_type, value in self.optimal_conditions['temperature'].items():
fig.add_hline(
y=value,
line_dash="dash",
line_color="green",
annotation_text=f"Optimal {limit_type}",
row=1, col=1
)
def add_humidity_plot(self, fig, df):
"""Add humidity visualization"""
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['humidity'],
name='Humidity',
line=dict(color='blue', width=2),
mode='lines'
),
row=2, col=1
)
if 'humidity_7day_avg' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['humidity_7day_avg'],
name='7-Day Average',
line=dict(color='darkblue', width=1, dash='dot'),
mode='lines'
),
row=2, col=1
)
# Add optimal range
for limit_type, value in self.optimal_conditions['humidity'].items():
fig.add_hline(
y=value,
line_dash="dash",
line_color="green",
annotation_text=f"Optimal {limit_type}",
row=2, col=1
)
def add_rainfall_plot(self, fig, df):
"""Add rainfall visualization"""
fig.add_trace(
go.Bar(
x=df['date'],
y=df['rainfall'],
name='Daily Rainfall',
marker_color='lightblue',
opacity=0.6
),
row=3, col=1
)
if 'rainfall_7day_avg' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['rainfall_7day_avg'],
name='7-Day Average',
line=dict(color='blue', width=2),
mode='lines'
),
row=3, col=1
)
def add_combined_indices_plot(self, fig, df):
"""Add vegetation and suitability indices visualization"""
if 'estimated_ndvi' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['estimated_ndvi'],
name='Vegetation Index',
line=dict(color='green', width=2),
mode='lines'
),
row=4, col=1
)
if 'daily_suitability' in df.columns:
fig.add_trace(
go.Scatter(
x=df['date'],
y=df['daily_suitability'],
name='Growing Suitability',
line=dict(color='purple', width=2),
mode='lines'
),
row=4, col=1
)
def add_season_shading(self, fig, df):
"""Add season shading to all plots"""
if 'season' in df.columns:
seasons = df['season'].unique()
season_colors = {
'Main': 'rgba(0,255,0,0.1)', # Green
'Early': 'rgba(255,255,0,0.1)', # Yellow
'Late': 'rgba(255,165,0,0.1)', # Orange
'Dry': 'rgba(255,0,0,0.1)' # Red
}
for season in seasons:
season_data = df[df['season'] == season]
if not season_data.empty:
for row in range(1, 5):
fig.add_vrect(
x0=season_data['date'].iloc[0],
x1=season_data['date'].iloc[-1],
fillcolor=season_colors.get(season, 'rgba(128,128,128,0.1)'),
layer="below",
line_width=0,
annotation_text=season if row == 1 else None,
annotation_position="top left",
row=row, col=1
)
def create_enhanced_map(self, lat, lon, score, ndvi_value):
"""Create an interactive map with analysis overlays"""
m = folium.Map(location=[lat, lon], zoom_start=13)
# Add measurement tools
plugins.MeasureControl(position='topright').add_to(m)
plugins.Fullscreen().add_to(m)
# Add location marker
folium.Marker(
[lat, lon],
popup='Analysis Location',
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
# Create NDVI colormap
ndvi_colormap = cm.LinearColormap(
colors=self.ndvi_colors,
vmin=-1,
vmax=1,
caption='Vegetation Index (NDVI)'
)
# Add NDVI circle
folium.Circle(
radius=2000,
location=[lat, lon],
popup=f'NDVI: {ndvi_value:.2f}',
color=ndvi_colormap(ndvi_value),
fill=True,
fillOpacity=0.4
).add_to(m)
# Add suitability circles
score_color = self.get_score_color(score)
for radius in [500, 1000, 1500]:
folium.Circle(
radius=radius,
location=[lat, lon],
popup=f'Suitability Score: {score:.2f}',
color=score_color,
fill=False,
weight=2
).add_to(m)
# Add mini map
minimap = plugins.MiniMap()
m.add_child(minimap)
# Add layer control
folium.LayerControl().add_to(m)
m.add_child(ndvi_colormap)
return m._repr_html_()
def create_gauge_chart(self, score):
"""Create an enhanced gauge chart for the overall score"""
fig = go.Figure(go.Indicator(
mode="gauge+number+delta",
value=score,
domain={'x': [0, 1], 'y': [0, 1]},
title={
'text': "Growing Conditions Score",
'font': {'size': 24}
},
delta={
'reference': 0.8,
'increasing': {'color': "green"},
'decreasing': {'color': "red"}
},
gauge={
'axis': {'range': [None, 1], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "darkblue"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "gray",
'steps': [
{'range': [0, 0.4], 'color': 'rgba(255, 0, 0, 0.6)'},
{'range': [0.4, 0.6], 'color': 'rgba(255, 255, 0, 0.6)'},
{'range': [0.6, 0.8], 'color': 'rgba(144, 238, 144, 0.6)'},
{'range': [0.8, 1], 'color': 'rgba(0, 128, 0, 0.6)'}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 0.8
}
}
))
fig.update_layout(
height=300,
margin=dict(l=20, r=20, t=60, b=20),
paper_bgcolor="white",
font={'color': "darkblue", 'family': "Arial"}
)
return fig
def get_score_color(self, score):
"""Get color based on score"""
if score >= 0.8:
return 'green'
elif score >= 0.6:
return 'yellow'
elif score >= 0.4:
return 'orange'
return 'red' |