Update part1_data.py
Browse files- part1_data.py +164 -5
part1_data.py
CHANGED
@@ -8,6 +8,8 @@ import requests
|
|
8 |
from geopy.geocoders import Nominatim
|
9 |
from geopy.exc import GeocoderTimedOut
|
10 |
from scipy import stats
|
|
|
|
|
11 |
|
12 |
# Get API key from environment variable
|
13 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
@@ -18,7 +20,8 @@ class TobaccoAnalyzer:
|
|
18 |
self.optimal_conditions = {
|
19 |
'temperature': {'min': 20, 'max': 30},
|
20 |
'humidity': {'min': 60, 'max': 80},
|
21 |
-
'rainfall': {'min': 500/365, 'max': 1200/365}
|
|
|
22 |
}
|
23 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
24 |
self.seasons = {
|
@@ -27,6 +30,13 @@ class TobaccoAnalyzer:
|
|
27 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
28 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
29 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def geocode_location(self, location_name):
|
32 |
"""Convert location name to coordinates"""
|
@@ -69,7 +79,6 @@ class TobaccoAnalyzer:
|
|
69 |
# Get forecast data
|
70 |
forecast_data = []
|
71 |
try:
|
72 |
-
# Get 5-day forecast
|
73 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
74 |
response = requests.get(forecast_url)
|
75 |
if response.status_code == 200:
|
@@ -92,7 +101,6 @@ class TobaccoAnalyzer:
|
|
92 |
for day in range(1, forecast_days - 5):
|
93 |
date = last_date + timedelta(days=day)
|
94 |
|
95 |
-
# Calculate trends from historical data
|
96 |
if not historical_df.empty:
|
97 |
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
98 |
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
@@ -100,7 +108,6 @@ class TobaccoAnalyzer:
|
|
100 |
else:
|
101 |
temp_trend = humidity_trend = rainfall_trend = 0
|
102 |
|
103 |
-
# Get recent averages
|
104 |
recent_temps = [d['temperature'] for d in forecast_data[-5:]]
|
105 |
recent_humidity = [d['humidity'] for d in forecast_data[-5:]]
|
106 |
recent_rainfall = [d['rainfall'] for d in forecast_data[-5:]]
|
@@ -133,6 +140,87 @@ class TobaccoAnalyzer:
|
|
133 |
|
134 |
return all_data
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def analyze_trends(self, df):
|
137 |
"""Analyze weather trends and patterns"""
|
138 |
historical = df[df['type'] == 'historical']
|
@@ -172,4 +260,75 @@ class TobaccoAnalyzer:
|
|
172 |
}
|
173 |
}
|
174 |
|
175 |
-
return analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from geopy.geocoders import Nominatim
|
9 |
from geopy.exc import GeocoderTimedOut
|
10 |
from scipy import stats
|
11 |
+
import ee
|
12 |
+
import geemap
|
13 |
|
14 |
# Get API key from environment variable
|
15 |
OPENWEATHER_API_KEY = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
|
|
20 |
self.optimal_conditions = {
|
21 |
'temperature': {'min': 20, 'max': 30},
|
22 |
'humidity': {'min': 60, 'max': 80},
|
23 |
+
'rainfall': {'min': 500/365, 'max': 1200/365},
|
24 |
+
'ndvi': {'min': 0.3, 'max': 0.8} # Optimal NDVI range for tobacco
|
25 |
}
|
26 |
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
27 |
self.seasons = {
|
|
|
30 |
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
31 |
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
32 |
}
|
33 |
+
# Initialize Earth Engine
|
34 |
+
try:
|
35 |
+
ee.Initialize()
|
36 |
+
self.ee_initialized = True
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error initializing Earth Engine: {e}")
|
39 |
+
self.ee_initialized = False
|
40 |
|
41 |
def geocode_location(self, location_name):
|
42 |
"""Convert location name to coordinates"""
|
|
|
79 |
# Get forecast data
|
80 |
forecast_data = []
|
81 |
try:
|
|
|
82 |
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
83 |
response = requests.get(forecast_url)
|
84 |
if response.status_code == 200:
|
|
|
101 |
for day in range(1, forecast_days - 5):
|
102 |
date = last_date + timedelta(days=day)
|
103 |
|
|
|
104 |
if not historical_df.empty:
|
105 |
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
106 |
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
|
|
108 |
else:
|
109 |
temp_trend = humidity_trend = rainfall_trend = 0
|
110 |
|
|
|
111 |
recent_temps = [d['temperature'] for d in forecast_data[-5:]]
|
112 |
recent_humidity = [d['humidity'] for d in forecast_data[-5:]]
|
113 |
recent_rainfall = [d['rainfall'] for d in forecast_data[-5:]]
|
|
|
140 |
|
141 |
return all_data
|
142 |
|
143 |
+
def get_ndvi_data(self, lat, lon, radius=2000):
|
144 |
+
"""Get NDVI data for location"""
|
145 |
+
try:
|
146 |
+
point = ee.Geometry.Point([lon, lat])
|
147 |
+
area = point.buffer(radius)
|
148 |
+
|
149 |
+
end_date = datetime.now()
|
150 |
+
start_date = end_date - timedelta(days=90)
|
151 |
+
|
152 |
+
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
153 |
+
.filterDate(start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d')) \
|
154 |
+
.filterBounds(area) \
|
155 |
+
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
156 |
+
|
157 |
+
def addNDVI(image):
|
158 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
159 |
+
return image.addBands(ndvi)
|
160 |
+
|
161 |
+
s2_ndvi = s2.map(addNDVI)
|
162 |
+
ndvi_image = s2_ndvi.select('NDVI').mean()
|
163 |
+
|
164 |
+
stats = ndvi_image.reduceRegion(
|
165 |
+
reducer=ee.Reducer.mean().combine(
|
166 |
+
reducer2=ee.Reducer.stdDev(),
|
167 |
+
sharedInputs=True
|
168 |
+
).combine(
|
169 |
+
reducer2=ee.Reducer.minMax(),
|
170 |
+
sharedInputs=True
|
171 |
+
),
|
172 |
+
geometry=area,
|
173 |
+
scale=10,
|
174 |
+
maxPixels=1e9
|
175 |
+
).getInfo()
|
176 |
+
|
177 |
+
return {
|
178 |
+
'image': ndvi_image,
|
179 |
+
'stats': stats,
|
180 |
+
'area': area
|
181 |
+
}
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Error fetching NDVI data: {e}")
|
185 |
+
return None
|
186 |
+
|
187 |
+
def analyze_location(self, location_name, historical_days=90, forecast_days=90):
|
188 |
+
"""Comprehensive location analysis including weather and NDVI"""
|
189 |
+
try:
|
190 |
+
location_info = self.geocode_location(location_name)
|
191 |
+
if not location_info:
|
192 |
+
raise ValueError(f"Could not find coordinates for location: {location_name}")
|
193 |
+
|
194 |
+
lat = location_info['lat']
|
195 |
+
lon = location_info['lon']
|
196 |
+
|
197 |
+
weather_data = self.get_weather_data(lat, lon, historical_days, forecast_days)
|
198 |
+
weather_analysis = self.analyze_trends(weather_data)
|
199 |
+
weather_score = self.calculate_weather_score(weather_analysis)
|
200 |
+
|
201 |
+
ndvi_data = None
|
202 |
+
ndvi_score = None
|
203 |
+
if self.ee_initialized:
|
204 |
+
try:
|
205 |
+
ndvi_data = self.get_ndvi_data(lat, lon)
|
206 |
+
ndvi_score = self.calculate_ndvi_score(ndvi_data)
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error getting NDVI data: {e}")
|
209 |
+
|
210 |
+
return {
|
211 |
+
'location': location_info,
|
212 |
+
'weather_data': weather_data,
|
213 |
+
'weather_analysis': weather_analysis,
|
214 |
+
'weather_score': weather_score,
|
215 |
+
'ndvi_data': ndvi_data,
|
216 |
+
'ndvi_score': ndvi_score,
|
217 |
+
'combined_score': self.calculate_combined_score(weather_score, ndvi_score)
|
218 |
+
}
|
219 |
+
|
220 |
+
except Exception as e:
|
221 |
+
print(f"Error in location analysis: {e}")
|
222 |
+
return None
|
223 |
+
|
224 |
def analyze_trends(self, df):
|
225 |
"""Analyze weather trends and patterns"""
|
226 |
historical = df[df['type'] == 'historical']
|
|
|
260 |
}
|
261 |
}
|
262 |
|
263 |
+
return analysis
|
264 |
+
|
265 |
+
def calculate_ndvi_score(self, ndvi_data):
|
266 |
+
"""Calculate a score based on NDVI data"""
|
267 |
+
if not ndvi_data or 'stats' not in ndvi_data:
|
268 |
+
return None
|
269 |
+
|
270 |
+
stats = ndvi_data['stats']
|
271 |
+
mean_ndvi = stats.get('NDVI_mean', 0)
|
272 |
+
|
273 |
+
# Convert NDVI from -1:1 scale to 0:1 scale
|
274 |
+
score = (mean_ndvi + 1) / 2
|
275 |
+
|
276 |
+
# Adjust score based on optimal NDVI ranges
|
277 |
+
if self.optimal_conditions['ndvi']['min'] <= mean_ndvi <= self.optimal_conditions['ndvi']['max']:
|
278 |
+
score *= 1.2 # Bonus for optimal range
|
279 |
+
elif mean_ndvi < 0:
|
280 |
+
score *= 0.5 # Penalty for very low vegetation
|
281 |
+
|
282 |
+
return min(1.0, max(0.0, score))
|
283 |
+
|
284 |
+
def calculate_weather_score(self, weather_analysis):
|
285 |
+
"""Calculate weather suitability score"""
|
286 |
+
if not weather_analysis:
|
287 |
+
return None
|
288 |
+
|
289 |
+
historical = weather_analysis['historical']
|
290 |
+
|
291 |
+
temp_mean = historical['temperature']['mean']
|
292 |
+
humidity_mean = historical['humidity']['mean']
|
293 |
+
rainfall_mean = historical['rainfall']['mean']
|
294 |
+
|
295 |
+
temp_score = self.calculate_range_score(
|
296 |
+
temp_mean,
|
297 |
+
self.optimal_conditions['temperature']['min'],
|
298 |
+
self.optimal_conditions['temperature']['max']
|
299 |
+
)
|
300 |
+
|
301 |
+
humidity_score = self.calculate_range_score(
|
302 |
+
humidity_mean,
|
303 |
+
self.optimal_conditions['humidity']['min'],
|
304 |
+
self.optimal_conditions['humidity']['max']
|
305 |
+
)
|
306 |
+
|
307 |
+
rainfall_score = self.calculate_range_score(
|
308 |
+
rainfall_mean,
|
309 |
+
self.optimal_conditions['rainfall']['min'],
|
310 |
+
self.optimal_conditions['rainfall']['max']
|
311 |
+
)
|
312 |
+
|
313 |
+
return (temp_score * 0.4 + humidity_score * 0.3 + rainfall_score * 0.3)
|
314 |
+
|
315 |
+
def calculate_range_score(self, value, min_val, max_val):
|
316 |
+
"""Calculate score based on optimal range"""
|
317 |
+
if min_val <= value <= max_val:
|
318 |
+
return 1.0
|
319 |
+
elif value < min_val:
|
320 |
+
return max(0, 1 - (min_val - value) / min_val)
|
321 |
+
else:
|
322 |
+
return max(0, 1 - (value - max_val) / max_val)
|
323 |
+
|
324 |
+
def calculate_combined_score(self, weather_score, ndvi_score):
|
325 |
+
"""Calculate combined suitability score"""
|
326 |
+
if weather_score is None:
|
327 |
+
return None
|
328 |
+
if ndvi_score is None:
|
329 |
+
return weather_score
|
330 |
+
|
331 |
+
weather_weight = 0.6
|
332 |
+
ndvi_weight = 0.4
|
333 |
+
|
334 |
+
return (weather_score * weather_weight) + (ndvi_score * ndvi_weight)
|