Spaces:
Runtime error
Runtime error
File size: 6,044 Bytes
1eaf59a 8c952bb 5247bff 826be26 8c952bb 92cd759 8c952bb 92cd759 5247bff 1eaf59a 826be26 c2c7513 79ca3c1 c2c7513 79ca3c1 c2c7513 5247bff 26c8d1e 7e8426c 5247bff 826be26 5247bff 8c952bb 92cd759 5247bff 826be26 92cd759 5247bff 826be26 5247bff 826be26 5247bff 826be26 92cd759 826be26 92cd759 5247bff c2c7513 92cd759 c2c7513 92cd759 5247bff c2c7513 5247bff c2c7513 5247bff c2c7513 5247bff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
#
from transformers import Wav2Vec2FeatureExtractor
from transformers import AutoModel
import torch
from torch import nn
import torchaudio
import torchaudio.transforms as T
import logging
import json
import importlib
modeling_MERT = importlib.import_module("MERT-v0-public.modeling_MERT")
from Prediction_Head.MTGGenre_head import MLPProberBase
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter(
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)
inputs = [
gr.components.Audio(type="filepath", label="Add music audio file"),
gr.inputs.Audio(source="microphone", type="filepath"),
]
live_inputs = [
gr.Audio(source="microphone",streaming=True, type="filepath"),
]
# outputs = [gr.components.Textbox()]
# outputs = [gr.components.Textbox(), transcription_df]
title = "Predict the top 5 possible genres and tags of Music"
description = "An example of using map/MERT-95M-public model as backbone to conduct music genre/tagging predcition."
article = ""
audio_examples = [
# ["input/example-1.wav"],
# ["input/example-2.wav"],
]
# Load the model and the corresponding preprocessor config
# model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
# processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
model = modeling_MERT.MERTModel.from_pretrained("./MERT-v0-public")
processor = Wav2Vec2FeatureExtractor.from_pretrained("./MERT-v0-public")
MERT_LAYER_IDX = 7
MTGGenre_classifier = MLPProberBase()
MTGGenre_classifier.load_state_dict(torch.load('Prediction_Head/best_MTGGenre.ckpt')['state_dict'])
with open('Prediction_Head/MTGGenre_id2class.json', 'r') as f:
id2cls=json.load(f)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
MTGGenre_classifier.to(device)
def convert_audio(inputs, microphone):
if (microphone is not None):
inputs = microphone
waveform, sample_rate = torchaudio.load(inputs)
resample_rate = processor.sampling_rate
# make sure the sample_rate aligned
if resample_rate != sample_rate:
print(f'setting rate from {sample_rate} to {resample_rate}')
resampler = T.Resample(sample_rate, resample_rate)
waveform = resampler(waveform)
waveform = waveform.view(-1,) # make it (n_sample, )
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
model_inputs.to(device)
with torch.no_grad():
model_outputs = model(**model_inputs, output_hidden_states=True)
# take a look at the output shape, there are 13 layers of representation
# each layer performs differently in different downstream tasks, you should choose empirically
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()
print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
logits = MTGGenre_classifier(torch.mean(all_layer_hidden_states[MERT_LAYER_IDX], dim=0)) # [1, 87]
print(logits.shape)
sorted_idx = torch.argsort(logits, dim = -1, descending=True)
output_texts = "\n".join([id2cls[str(idx.item())].replace('genre---', '') for idx in sorted_idx[:5]])
# logger.warning(all_layer_hidden_states.shape)
# return f"device {device}, sample reprensentation: {str(all_layer_hidden_states[12, 0, :10])}"
return f"device: {device}\n" + output_texts
def live_convert_audio(microphone):
if (microphone is not None):
inputs = microphone
waveform, sample_rate = torchaudio.load(inputs)
resample_rate = processor.sampling_rate
# make sure the sample_rate aligned
if resample_rate != sample_rate:
print(f'setting rate from {sample_rate} to {resample_rate}')
resampler = T.Resample(sample_rate, resample_rate)
waveform = resampler(waveform)
waveform = waveform.view(-1,) # make it (n_sample, )
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
model_inputs.to(device)
with torch.no_grad():
model_outputs = model(**model_inputs, output_hidden_states=True)
# take a look at the output shape, there are 13 layers of representation
# each layer performs differently in different downstream tasks, you should choose empirically
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()
print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
logits = MTGGenre_classifier(torch.mean(all_layer_hidden_states[MERT_LAYER_IDX], dim=0)) # [1, 87]
print(logits.shape)
sorted_idx = torch.argsort(logits, dim = -1, descending=True)
output_texts = "\n".join([id2cls[str(idx.item())].replace('genre---', '') for idx in sorted_idx[:5]])
# logger.warning(all_layer_hidden_states.shape)
# return f"device {device}, sample reprensentation: {str(all_layer_hidden_states[12, 0, :10])}"
return f"device: {device}\n" + output_texts
audio_chunked = gr.Interface(
fn=convert_audio,
inputs=inputs,
outputs=[gr.components.Textbox()],
allow_flagging="never",
title=title,
description=description,
article=article,
examples=audio_examples,
)
live_audio_chunked = gr.Interface(
fn=live_convert_audio,
inputs=live_inputs,
outputs=[gr.components.Textbox()],
allow_flagging="never",
title=title,
description=description,
article=article,
# examples=audio_examples,
live=True,
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface(
[
audio_chunked,
live_audio_chunked,
],
[
"Audio File or Recording",
"Live Streaming Music"
]
)
demo.queue(concurrency_count=1, max_size=5)
demo.launch(show_api=False) |