File size: 7,613 Bytes
2781c38 04d1b47 2781c38 eab05fa 2781c38 b61f426 fa7aa87 b61f426 2b996f3 2781c38 072c024 2781c38 bf0a4f5 9312801 2781c38 9312801 2781c38 072c024 2781c38 072c024 3aff247 f633b78 2781c38 f633b78 2781c38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import chromadb
from llama_index.core.base.embeddings.base import similarity
#from llama_index.llms.ollama import Ollama
from llama_index.llms.openai import OpenAI
from llama_index.llms.groq import Groq
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings, DocumentSummaryIndex
from llama_index.core import StorageContext, get_response_synthesizer
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import load_index_from_storage
import os
from dotenv import load_dotenv
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.postprocessor import SimilarityPostprocessor
import time
import gradio as gr
from llama_index.core.memory import ChatMemoryBuffer
from llama_parse import LlamaParse
from llama_index.core import PromptTemplate
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.core.chat_engine import CondenseQuestionChatEngine
from llama_index.postprocessor.cohere_rerank import CohereRerank
# load env file
load_dotenv()
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
# set up callback manager
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
Settings.callback_manager = callback_manager
# set up LLM
#llm = Groq(model="llama3-8b-8192")#"llama3-8b-8192")
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
llm = OpenAI(model="gpt-3.5-turbo",api_key = OPENAI_API_KEY)
Settings.llm = llm
# set up embedding model
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
Settings.embed_model = embed_model
# create splitter
splitter = SentenceSplitter(chunk_size=2048, chunk_overlap=50)
Settings.transformations = [splitter]
# create parser
parser = LlamaParse(
api_key=LLAMAINDEX_API_KEY,
result_type="markdown", # "markdown" and "text" are available
verbose=True,
)
#create index
if os.path.exists("./vectordb"):
print("Index Exists!")
storage_context = StorageContext.from_defaults(persist_dir="./vectordb")
index = load_index_from_storage(storage_context)
else:
filename_fn = lambda filename: {"file_name": filename}
required_exts = [".pdf",".docx"]
file_extractor = {".pdf": parser}
reader = SimpleDirectoryReader(
input_dir="./data",
file_extractor=file_extractor,
required_exts=required_exts,
recursive=True,
file_metadata=filename_fn
)
documents = reader.load_data()
print("index creating with `%d` documents", len(documents))
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
index.storage_context.persist(persist_dir="./vectordb")
"""
#create document summary index
if os.path.exists("./docsummarydb"):
print("Index Exists!")
storage_context = StorageContext.from_defaults(persist_dir="./docsummarydb")
doc_index = load_index_from_storage(storage_context)
else:
filename_fn = lambda filename: {"file_name": filename}
required_exts = [".pdf",".docx"]
reader = SimpleDirectoryReader(
input_dir="./data",
required_exts=required_exts,
recursive=True,
file_metadata=filename_fn
)
documents = reader.load_data()
print("index creating with `%d` documents", len(documents))
response_synthesizer = get_response_synthesizer(
response_mode="tree_summarize", use_async=True
)
doc_index = DocumentSummaryIndex.from_documents(
documents,
llm = llm,
transformations = [splitter],
response_synthesizer = response_synthesizer,
show_progress = True
)
doc_index.storage_context.persist(persist_dir="./docsummarydb")
"""
"""
retriever = DocumentSummaryIndexEmbeddingRetriever(
doc_index,
similarity_top_k=5,
)
"""
# set up retriever
retriever = VectorIndexRetriever(
index = index,
similarity_top_k = 15,
#vector_store_query_mode="mmr",
#vector_store_kwargs={"mmr_threshold": 0.4}
)
# set up response synthesizer
response_synthesizer = get_response_synthesizer()
### customising prompts worsened the result###
"""
# set up prompt template
qa_prompt_tmpl = (
"Context information from multiple sources is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the information from multiple sources and not prior knowledge, "
"answer the query.\n"
"Query: {query_str}\n"
"Answer: "
)
qa_prompt = PromptTemplate(qa_prompt_tmpl)
"""
# setting up query engine
cohere_rerank = CohereRerank(api_key=COHERE_API_KEY, top_n=5)
# setting up query engine
query_engine = RetrieverQueryEngine(
retriever = retriever,
#node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53)],
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53), cohere_rerank],
response_synthesizer=get_response_synthesizer(response_mode="tree_summarize",verbose=True)
)
print(query_engine.get_prompts())
#response = query_engine.query("What happens if the distributor wants its own warehouse for pizzahood?")
#print(response)
memory = ChatMemoryBuffer.from_defaults(token_limit=10000)
custom_prompt = PromptTemplate(
"""\
Given a conversation (between Human and Assistant) and a follow up message from Human, \
rewrite the message to be a standalone question that captures all relevant context \
from the conversation. If you are unsure, ask for more information.
<Chat History>
{chat_history}
<Follow Up Message>
{question}
<Standalone question>
"""
)
# list of `ChatMessage` objects
custom_chat_history = [
ChatMessage(
role=MessageRole.USER,
content="Hello assistant.",
),
ChatMessage(role=MessageRole.ASSISTANT, content="Hello user."),
]
chat_engine = CondenseQuestionChatEngine.from_defaults(
query_engine=query_engine,
condense_question_prompt=custom_prompt,
chat_history=custom_chat_history,
verbose=True,
memory=memory
)
# gradio with streaming support
with gr.Blocks() as demo:
chat_engine = chat_engine
chatbot = gr.Chatbot()
msg = gr.Textbox(label="⏎ for sending",
placeholder="Ask me something",)
clear = gr.Button("Delete")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
user_message = history[-1][0]
#bot_message = chat_engine.chat(user_message)
source_nodes = ""
bot_message = query_engine.query(user_message + "Let's think step by step to get the correct answer. If you cannot provide an answer, say you don't know.")
source_nodes_list = bot_message.source_nodes
for nodes in source_nodes_list:
source_nodes = source_nodes + str(nodes) + "\n\n"
final_response = bot_message.response + "\n Source nodes: \n" + source_nodes
history[-1][1] = ""
for character in final_response:
history[-1][1] += character
time.sleep(0.01)
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
# demo.queue()
demo.launch(share=False) |