Spaces:
Runtime error
Runtime error
marcelo-castro-cardoso
commited on
Commit
•
afc8094
1
Parent(s):
a7ab009
update
Browse files- app.py +27 -14
- requirements.txt +2 -2
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
|
|
|
|
|
3 |
from pathlib import Path
|
4 |
import torch
|
5 |
from transformers import pipeline
|
@@ -9,6 +11,8 @@ from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
|
|
9 |
from llama_index.node_parser import SentenceSplitter
|
10 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
11 |
|
|
|
|
|
12 |
from llama_index.embeddings import LangchainEmbedding
|
13 |
|
14 |
INPUT_FOLDER = "./data"
|
@@ -19,28 +23,37 @@ max_input_size = 2048
|
|
19 |
num_output = 256
|
20 |
max_chunk_overlap = 20
|
21 |
max_prompt_chunk_overlap = 0.5
|
22 |
-
prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
embed_model = LangchainEmbedding(HuggingFaceEmbeddings())
|
26 |
|
27 |
-
class CustomLLM(LLM):
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
# define our LLM
|
43 |
-
llm_predictor = LLMPredictor(llm=
|
44 |
|
45 |
node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=max_chunk_overlap)
|
46 |
prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import os
|
4 |
+
|
5 |
from pathlib import Path
|
6 |
import torch
|
7 |
from transformers import pipeline
|
|
|
11 |
from llama_index.node_parser import SentenceSplitter
|
12 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
13 |
|
14 |
+
from llama_index.llms import HuggingFaceLLM
|
15 |
+
|
16 |
from llama_index.embeddings import LangchainEmbedding
|
17 |
|
18 |
INPUT_FOLDER = "./data"
|
|
|
23 |
num_output = 256
|
24 |
max_chunk_overlap = 20
|
25 |
max_prompt_chunk_overlap = 0.5
|
|
|
26 |
|
27 |
+
# criação de um LLM HuggingFace no framework llamaindex
|
28 |
+
llm = HuggingFaceLLM(
|
29 |
+
tokenizer_name="tiiuae/falcon-7b-instruct",
|
30 |
+
model_name="tiiuae/falcon-7b-instruct",
|
31 |
+
device_map="auto",
|
32 |
+
model_kwargs={"max_length": 64, "offload_folder": "cached", "torch_dtype": torch.float16}
|
33 |
+
)
|
34 |
+
|
35 |
+
# prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
|
36 |
+
|
37 |
+
# pipe = pipeline("text-generation", model="databricks/dolly-v2-3b", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
|
38 |
embed_model = LangchainEmbedding(HuggingFaceEmbeddings())
|
39 |
|
40 |
+
# class CustomLLM(LLM):
|
41 |
+
# model_name = "databricks/dolly-v2-3b"
|
42 |
|
43 |
+
# def _call(self, prompt, stop = None):
|
44 |
+
# response = pipe(prompt, max_new_tokens=num_output)[0]["generated_text"]
|
45 |
+
# return response
|
46 |
|
47 |
+
# @property
|
48 |
+
# def _identifying_params(self):
|
49 |
+
# return {"name_of_model": self.model_name}
|
50 |
|
51 |
+
# @property
|
52 |
+
# def _llm_type(self):
|
53 |
+
# return "custom"
|
54 |
|
55 |
# define our LLM
|
56 |
+
llm_predictor = LLMPredictor(llm=llm)
|
57 |
|
58 |
node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=max_chunk_overlap)
|
59 |
prompt_helper = PromptHelper(max_input_size, num_output, max_prompt_chunk_overlap)
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
gradio
|
2 |
-
langchain
|
3 |
-
llama-index
|
4 |
transformers
|
5 |
torch
|
6 |
accelerate
|
|
|
1 |
gradio
|
2 |
+
langchain==0.0.348
|
3 |
+
llama-index==0.9.26
|
4 |
transformers
|
5 |
torch
|
6 |
accelerate
|