Spaces:
Sleeping
Sleeping
File size: 16,436 Bytes
0edab04 d9a62b3 0edab04 990159e 0edab04 dc3a0c9 990159e 0edab04 990159e 0edab04 d9a62b3 0a2958b 0edab04 d9a62b3 0edab04 72e0f08 0edab04 0a2958b d9a62b3 0a2958b 0edab04 d9a62b3 72e0f08 d9a62b3 72e0f08 d9a62b3 0edab04 e419f45 0edab04 0a2958b 0edab04 e419f45 0edab04 e419f45 0edab04 0a2958b 0edab04 45b2ac8 990159e 45b2ac8 990159e 0a2958b 990159e d9a62b3 45b2ac8 0a2958b 990159e 45b2ac8 0edab04 d9a62b3 0edab04 45b2ac8 0a2958b 990159e 0edab04 d9a62b3 0edab04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "3bedf0dc-8d8e-4ede-a9e6-b8f35136aa00",
"metadata": {},
"outputs": [],
"source": [
"#|default_exp app"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "667802a7-0f36-4136-a381-e66210b20462",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"#tts_openai_secrets.py content:\n",
"#import os\n",
"#os.environ['OPENAI_API_KEY'] = 'sk-XXXXXXXXXXXXXXXXXXXXXX'\n",
"import os\n",
"secret_import_failed = False\n",
"try:\n",
" _ = os.environ['OPENAI_API_KEY']\n",
" print('OPENAI_API_KEY environment variable was found.')\n",
"except:\n",
" print('OPENAI_API_KEY environment variable was not found.')\n",
" secret_import_failed = True\n",
"try:\n",
" GRADIO_PASSWORD = os.environ['GRADIO_PASSWORD']\n",
" print('GRADIO_PASSWORD environment variable was found.')\n",
"except:\n",
" print('GRADIO_PASSWORD environment variable was not found.')\n",
" secret_import_failed = True\n",
"\n",
"if secret_import_failed == True:\n",
" import tts_openai_secrets\n",
" GRADIO_PASSWORD = os.environ['GRADIO_PASSWORD']\n",
" print('import tts_openai_secrets succeeded')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d9863fc-969e-409b-8e20-b9c3cd2cc3e7",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"try:\n",
" import nbdev\n",
"except:\n",
" print('to convert this notebook to app.py you need to pip install nbdev')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f486d3a",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"import gradio as gr\n",
"import openai\n",
"from pydub import AudioSegment\n",
"import io\n",
"from datetime import datetime\n",
"from math import ceil\n",
"from multiprocessing.pool import ThreadPool\n",
"from functools import partial\n",
"from tenacity import (\n",
" retry,\n",
" stop_after_attempt,\n",
" wait_random_exponential,\n",
") # for exponential backoff"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ffd33b4-cb9b-4c01-bff6-4c3102854ab6",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"try:\n",
" tts_models = [o.id for o in openai.models.list().data if 'tts' in o.id]\n",
" print('successfully got tts model list:', tts_models)\n",
"except:\n",
" tts_models = ['tts-1']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ddbca5d-4b04-43ab-afaf-430802980e78",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"tts_voices = ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8eb7e7d5-7121-4762-b8d1-e5a9539e2b36",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"clean_text_prompt = \"\"\"Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early.\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52d373be-3a79-412e-8ca2-92bb443fa52d",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"#Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.\n",
"OPENAI_CLIENT_TTS_THREADS = 10 "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24674094-4d47-4e48-b591-55faabcff8df",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def split_text(input_text, max_length=4000, lookback=1000):\n",
" # If the text is shorter than the max_length, return it as is\n",
" if len(input_text) <= max_length:\n",
" return [input_text]\n",
"\n",
" chunks = []\n",
" while input_text:\n",
" # Check if the remaining text is shorter than the max_length\n",
" if len(input_text) <= max_length:\n",
" chunks.append(input_text)\n",
" break\n",
"\n",
" # Define the split point, initially set to max_length\n",
" split_point = max_length\n",
"\n",
" # Look for a newline in the last 'lookback' characters\n",
" newline_index = input_text.rfind('\\n', max_length-lookback, max_length)\n",
" if newline_index != -1:\n",
" split_point = newline_index + 1 # Include the newline in the current chunk\n",
"\n",
" # If no newline, look for a period followed by space\n",
" elif '. ' in input_text[max_length-lookback:max_length]:\n",
" # Find the last '. ' in the lookback range\n",
" period_index = input_text.rfind('. ', max_length-lookback, max_length)\n",
" split_point = period_index + 2 # Split after the space\n",
"\n",
" # Split the text and update the input_text\n",
" chunks.append(input_text[:split_point])\n",
" input_text = input_text[split_point:]\n",
"\n",
" return chunks"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6224ae5-3792-42b2-8392-3abd42998a50",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def concatenate_mp3(mp3_files):\n",
" if len(mp3_files) == 1:\n",
" return mp3_files[0]\n",
" else:\n",
" # Initialize an empty AudioSegment object for concatenation\n",
" combined = AudioSegment.empty()\n",
" \n",
" # Write out audio file responses as individual files for debugging\n",
" # for idx, mp3_data in enumerate(mp3_files):\n",
" # with open(f'./{idx}.mp3', 'wb') as f:\n",
" # f.write(mp3_data)\n",
"\n",
" # Loop through the list of mp3 binary data\n",
" for mp3_data in mp3_files:\n",
" # Convert binary data to an audio segment\n",
" audio_segment = AudioSegment.from_file(io.BytesIO(mp3_data), format=\"mp3\")\n",
" # Concatenate this segment to the combined segment\n",
" combined += audio_segment\n",
"\n",
" # Export the combined segment to a new mp3 file\n",
" # Use a BytesIO object to handle this in memory\n",
" combined_mp3 = io.BytesIO()\n",
" combined.export(combined_mp3, format=\"mp3\")\n",
"\n",
" # Seek to the start so it's ready for reading\n",
" combined_mp3.seek(0)\n",
"\n",
" return combined_mp3.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4691703d-ed0f-4481-8006-b2906289b780",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):\n",
" client = openai.OpenAI()\n",
" \n",
" @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))\n",
" def _create_speech_with_backoff(**kwargs):\n",
" return client.audio.speech.create(**kwargs)\n",
" \n",
" response = _create_speech_with_backoff(input=input, model=model, voice=voice, speed=speed, **kwargs)\n",
" client.close()\n",
" return chunk_idx, response.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e34bb4aa-698c-4452-8cda-bd02b38f7122",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech2(input_text, model='tts-1', voice='alloy', progress=gr.Progress(), **kwargs):\n",
" start = datetime.now()\n",
" # Split the input text into chunks\n",
" chunks = split_text(input_text)\n",
"\n",
" # Initialize the progress bar\n",
" progress(0, desc=f\"Started processing {len(chunks)} text chunks using {OPENAI_CLIENT_TTS_THREADS} threads. ETA is ~{ceil(len(chunks)/OPENAI_CLIENT_TTS_THREADS)} min.\")\n",
"\n",
" # Initialize a list to hold the audio data of each chunk\n",
" audio_data = []\n",
"\n",
" # Process each chunk\n",
" with ThreadPool(processes=OPENAI_CLIENT_TTS_THREADS) as pool:\n",
" results = pool.starmap(\n",
" partial(create_speech_openai, model=model, voice=voice, **kwargs), \n",
" zip(range(len(chunks)),chunks)\n",
" )\n",
" audio_data = [o[1] for o in sorted(results)]\n",
"\n",
" # Progress\n",
" progress(.9, desc=f\"Merging audio chunks... {(datetime.now()-start).seconds} seconds to process.\")\n",
" \n",
" # Concatenate the audio data from all chunks\n",
" combined_audio = concatenate_mp3(audio_data)\n",
"\n",
" # Final update to the progress bar\n",
" progress(1, desc=f\"Processing completed... {(datetime.now()-start).seconds} seconds to process.\")\n",
" \n",
" print(f\"Processing time: {(datetime.now()-start).seconds} seconds.\")\n",
"\n",
" return combined_audio\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5388e860",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech(input_text, model='tts-1', voice='alloy', progress=gr.Progress()):\n",
" # Split the input text into chunks\n",
" chunks = split_text(input_text)\n",
"\n",
" # Initialize the progress bar\n",
" progress(0, desc=\"Starting TTS processing...\")\n",
"\n",
" # Initialize a list to hold the audio data of each chunk\n",
" audio_data = []\n",
"\n",
" # Create a client instance for OpenAI\n",
" client = openai.OpenAI()\n",
"\n",
" # Calculate the progress increment for each chunk\n",
" progress_increment = 1.0 / len(chunks)\n",
"\n",
" # Process each chunk\n",
" for i, chunk in enumerate(chunks):\n",
" response = client.audio.speech.create(\n",
" model=model,\n",
" voice=voice,\n",
" input=chunk,\n",
" speed=1.0\n",
" )\n",
" # Append the audio content of the response to the list\n",
" audio_data.append(response.content)\n",
"\n",
" # Update the progress bar\n",
" progress((i + 1) * progress_increment, desc=f\"Processing chunk {i + 1} of {len(chunks)}\")\n",
"\n",
" # Close the client connection\n",
" client.close()\n",
"\n",
" # Concatenate the audio data from all chunks\n",
" combined_audio = concatenate_mp3(audio_data)\n",
"\n",
" # Final update to the progress bar\n",
" progress(1, desc=\"Processing completed\")\n",
"\n",
" return combined_audio\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "236dd8d3-4364-4731-af93-7dcdec6f18a1",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_input_text_len(input_text):\n",
" return len(input_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0523a158-ee07-48b3-9350-ee39d4deee7f",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_generation_cost(input_text, tts_model_dropdown):\n",
" text_len = len(input_text)\n",
" if tts_model_dropdown.endswith('-hd'):\n",
" cost = text_len/1000 * 0.03\n",
" else:\n",
" cost = text_len/1000 * 0.015\n",
" return \"${:,.3f}\".format(cost)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4fb3159-579b-4271-bc96-4cd1e2816eca",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"with gr.Blocks(title='OpenAI TTS', head='OpenAI TTS') as app:\n",
" gr.Markdown(\"# OpenAI TTS\")\n",
" gr.Markdown(\"\"\"Start typing below and then click **Go** to create the speech from your text. The current limit is 4,000 characters. \n",
"For requests longer than 4,000 chars they will be broken into chunks of 4,000 or less chars automatically.\"\"\")\n",
" with gr.Row():\n",
" input_text = gr.Textbox(max_lines=100, label=\"Enter text here\")\n",
" with gr.Row():\n",
" tts_model_dropdown = gr.Dropdown(value='tts-1',choices=tts_models, label='Model')\n",
" tts_voice_dropdown = gr.Dropdown(value='alloy',choices=tts_voices,label='Voice')\n",
" input_text_length = gr.Label(label=\"Number of characters\")\n",
" generation_cost = gr.Label(label=\"Generation cost\")\n",
" output_audio = gr.Audio()\n",
" input_text.input(fn=get_input_text_len, inputs=input_text, outputs=input_text_length)\n",
" input_text.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
" tts_model_dropdown.input(fn=get_generation_cost, inputs=[input_text,tts_model_dropdown], outputs=generation_cost)\n",
" go_btn = gr.Button(\"Go\")\n",
" go_btn.click(fn=create_speech2, inputs=[input_text, tts_model_dropdown, tts_voice_dropdown], outputs=[output_audio])\n",
" clear_btn = gr.Button('Clear')\n",
" clear_btn.click(fn=lambda: '', outputs=input_text)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a00648a1-891b-470b-9959-f5d502055713",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"launch_kwargs = {'auth':('username',GRADIO_PASSWORD),\n",
" 'auth_message':'Please log in to Mat\\'s TTS App with username: username and password.'}\n",
"queue_kwargs = {'default_concurrency_limit':10}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b534fe7-4337-423e-846a-1bdb7cccc4ea",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"#Notebook launch\n",
"app.queue(**queue_kwargs)\n",
"app.launch(**launch_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb886d45",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"#.py launch\n",
"if __name__ == \"__main__\":\n",
" app.queue(**queue_kwargs)\n",
" app.launch(**launch_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28e8d888-e790-46fa-bbac-4511b9ab796c",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"app.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "afbc9699-4d16-4060-88f4-cd1251754cbd",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"gr.close_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0420310d-930b-4904-8bd4-3458ad8bdbd3",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"nbdev.export.nb_export('app.ipynb',lib_path='.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9869749d-bc7c-4e24-9dbc-403f665d6200",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "python3",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|