|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from PIL import Image |
|
|
|
from model import * |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_image(prompt): |
|
|
|
return prompt_to_img(prompt)[0] |
|
|
|
|
|
|
|
|
|
description = """ |
|
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps. |
|
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning |
|
""" |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>") |
|
gr.Markdown(description) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) |
|
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) |
|
submit = gr.Button(scale=1, variant='primary') |
|
img = gr.Image(label='SDXL-Lightning Generated Image') |
|
|
|
prompt.submit(fn=generate_image, |
|
inputs=[prompt], |
|
outputs=img, |
|
) |
|
submit.click(fn=generate_image, |
|
inputs=[prompt], |
|
outputs=img, |
|
) |
|
|
|
demo.queue().launch() |