Spaces:
Sleeping
Sleeping
Upload 4 files
#1
by
mistermprah
- opened
- rainfall_app.py +41 -0
- rainfall_prediction_model.h5 +3 -0
- requirements.txt +6 -0
- scaler.joblib +3 -0
rainfall_app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the saved scaler and model
|
8 |
+
scaler = joblib.load('scaler.joblib')
|
9 |
+
model = load_model('rainfall_prediction_model.h5')
|
10 |
+
|
11 |
+
def predict_rainfall(Dew_Point, Pressure, Gust_Speed, RH, Wind_Direction,
|
12 |
+
Wind_Speed, Temperature, Rained, Water_Content, Solar_Radiation):
|
13 |
+
# Preprocess the input data
|
14 |
+
input_data = np.array([[Dew_Point, Pressure, Gust_Speed, RH, Wind_Direction,
|
15 |
+
Wind_Speed, Temperature, Rained, Water_Content, Solar_Radiation]])
|
16 |
+
input_data_scaled = scaler.transform(input_data)
|
17 |
+
input_data_scaled = input_data_scaled.reshape((input_data_scaled.shape[0], 1, input_data_scaled.shape[1]))
|
18 |
+
|
19 |
+
# Make a prediction
|
20 |
+
prediction = model.predict(input_data_scaled)
|
21 |
+
|
22 |
+
# Output the prediction
|
23 |
+
return 'Rain' if prediction[0][0] > 0 else 'No Rain'
|
24 |
+
|
25 |
+
# Gradio Interface
|
26 |
+
inputs = [
|
27 |
+
gr.inputs.Number(label="Dew Point"),
|
28 |
+
gr.inputs.Number(label="Pressure"),
|
29 |
+
gr.inputs.Number(label="Gust Speed"),
|
30 |
+
gr.inputs.Number(label="Relative Humidity"),
|
31 |
+
gr.inputs.Number(label="Wind Direction"),
|
32 |
+
gr.inputs.Number(label="Wind Speed"),
|
33 |
+
gr.inputs.Number(label="Temperature"),
|
34 |
+
gr.inputs.Number(label="Rained"),
|
35 |
+
gr.inputs.Number(label="Water Content"),
|
36 |
+
gr.inputs.Number(label="Solar Radiation")
|
37 |
+
]
|
38 |
+
output = gr.outputs.Textbox(label="Prediction")
|
39 |
+
|
40 |
+
gr.Interface(fn=predict_rainfall, inputs=inputs, outputs=output, title="Rainfall Prediction").launch()
|
41 |
+
|
rainfall_prediction_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cda417df87e791a82bc48abd93061cada7ddaea9cad5c7dda231431047234783
|
3 |
+
size 506208
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
numpy
|
3 |
+
joblib
|
4 |
+
tensorflow
|
5 |
+
gradio
|
6 |
+
|
scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dff6e925219a9a98856668c6c02016b7b68501ad95e891d408eb34cf261d1ffb
|
3 |
+
size 1319
|