Spaces:
Sleeping
Sleeping
File size: 5,023 Bytes
1674ccb f9dbd70 1674ccb f9dbd70 1674ccb a68a153 2c74cfc 45a05ea 2c74cfc a68a153 1674ccb e273c59 1674ccb a2fa92e 1674ccb a2fa92e 1674ccb f9dbd70 1674ccb f9dbd70 bc6c98d f9dbd70 bc6c98d f9dbd70 d98360d f9dbd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import streamlit as st
from transformers import pipeline
import torchaudio
from config import MODEL_ID
# Load the model and pipeline using the model_id variable
pipe = pipeline("audio-classification", model=MODEL_ID)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {}
for p in preds:
label = p["label"].replace('_', ' ')
# Simplify the labels as required
if "artifact" in label:
label = "artifact"
elif "murmur" in label:
label = "murmur"
elif "extrahls" in label:
label = "normal"
elif "extrastole" in label:
label = "normal"
elif "normal" in label:
label = "normal"
outputs[label] = p["score"]
return outputs
# Streamlit app layout
st.title("Heartbeat Sound Classification")
# Theme selection
theme = st.sidebar.selectbox(
"Select Theme",
["Light Green", "Light Blue", "Dark Green", "Dark Blue"]
)
# Add custom CSS for styling based on the selected theme
if theme == "Light Green":
st.markdown(
"""
<style>
body, .stApp {
background-color: #e8f5e9; /* Light green background */
}
.stApp {
color: #004d40; /* Dark green text */
}
.stButton > button, .stFileUpload > div {
background-color: #004d40; /* Dark green button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #00332c; /* Darker green on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Light Blue":
st.markdown(
"""
<style>
body, .stApp {
background-color: #e0f7fa; /* Light blue background */
}
.stApp {
color: #006064; /* Dark blue text */
}
.stButton > button, .stFileUpload > div {
background-color: #006064; /* Dark blue button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #004d40; /* Darker blue on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Dark Green":
st.markdown(
"""
<style>
body, .stApp {
background-color: #1b5e20; /* Dark green background */
}
.stApp {
color: #a5d6a7; /* Light green text */
}
.stButton > button, .stFileUpload > div {
background-color: #004d40; /* Dark green button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #00332c; /* Darker green on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Dark Blue":
st.markdown(
"""
<style>
body, .stApp {
background-color: #0d47a1; /* Dark blue background */
}
.stApp {
color: #bbdefb; /* Light blue text */
}
.stButton > button, .stFileUpload > div {
background-color: #006064; /* Dark blue button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #004d40; /* Darker blue on hover */
}
</style>
""",
unsafe_allow_html=True
)
# File uploader for audio files
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if uploaded_file is not None:
st.subheader("Uploaded Audio File")
# Load and display the audio file
audio_bytes = uploaded_file.read()
st.audio(audio_bytes, format='audio/wav')
# Save the uploaded file to a temporary location
with open("temp_audio_file.wav", "wb") as f:
f.write(audio_bytes)
# Classify the audio file
st.write("Classifying the audio...")
results = classify_audio("temp_audio_file.wav")
# Display the classification results in a dedicated output box
st.subheader("Classification Results")
results_box = st.empty()
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
results_box.text(results_str)
# Sample Audio Files for classification
st.write("Sample Audio Files:")
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
for example in examples:
if st.button(example):
st.subheader(f"Sample Audio: {example}")
audio_bytes = open(example, 'rb').read()
st.audio(audio_bytes, format='audio/wav')
results = classify_audio(example)
st.write("Results:")
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
st.text(results_str)
|