Spaces:
Sleeping
Sleeping
File size: 3,640 Bytes
1674ccb f9dbd70 1674ccb 627311b 1674ccb 627311b 1674ccb e273c59 9478f66 e273c59 9478f66 e273c59 1674ccb a2fa92e 1674ccb a2fa92e 1674ccb f9dbd70 1674ccb f9dbd70 bc6c98d f9dbd70 bc6c98d f9dbd70 d98360d f9dbd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import streamlit as st
from transformers import pipeline
import torchaudio
from config import MODEL_ID
# Load the model and pipeline using the model_id variable
pipe = pipeline("audio-classification", model=MODEL_ID)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {"normal": 0.0, "artifact": 0.0, "murmur": 0.0}
for p in preds:
label = p["label"]
# Simplify the labels and accumulate the scores
if "artifact" in label:
outputs["artifact"] += p["score"]
elif "murmur" in label:
outputs["murmur"] += p["score"]
elif "extra" in label or "normal" in label:
outputs["normal"] += p["score"]
return outputs
# Streamlit app layout
st.title("Heartbeat Sound Classification")
# Theme selection
theme = st.sidebar.selectbox(
"Select Theme",
["Light Green", "Light Blue"]
)
# Add custom CSS for styling based on the selected theme
if theme == "Light Green":
st.markdown(
"""
<style>
body, .stApp {
background-color: #e8f5e9; /* Light green background */
}
.stApp {
color: #004d40; /* Dark green text */
}
.stButton > button, .stFileUpload > div {
background-color: #004d40; /* Dark green button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #00332c; /* Darker green on hover */
}
</style>
""",
unsafe_allow_html=True
)
elif theme == "Light Blue":
st.markdown(
"""
<style>
body, .stApp {
background-color: #e0f7fa; /* Light blue background */
}
.stApp {
color: #006064; /* Dark blue text */
}
.stButton > button, .stFileUpload > div {
background-color: #006064; /* Dark blue button and file uploader background */
color: white; /* White text */
}
.stButton > button:hover, .stFileUpload > div:hover {
background-color: #004d40; /* Darker blue on hover */
}
</style>
""",
unsafe_allow_html=True
)
# File uploader for audio files
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if uploaded_file is not None:
st.subheader("Uploaded Audio File")
# Load and display the audio file
audio_bytes = uploaded_file.read()
st.audio(audio_bytes, format='audio/wav')
# Save the uploaded file to a temporary location
with open("temp_audio_file.wav", "wb") as f:
f.write(audio_bytes)
# Classify the audio file
st.write("Classifying the audio...")
results = classify_audio("temp_audio_file.wav")
# Display the classification results in a dedicated output box
st.subheader("Classification Results")
results_box = st.empty()
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
results_box.text(results_str)
# Sample Audio Files for classification
st.write("Sample Audio Files:")
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
for example in examples:
if st.button(example):
st.subheader(f"Sample Audio: {example}")
audio_bytes = open(example, 'rb').read()
st.audio(audio_bytes, format='audio/wav')
results = classify_audio(example)
st.write("Results:")
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
st.text(results_str)
|